

REMEDIAL ENHANCEMENT INVESTIGATION REPORT AREA 29 - FIRE

Prepared for

FAA William J. Hughes Technical Center

Atlantic City International Airport, New Jersey

TRC Environmental Corporation

/ 21 Griffin Road North Windsor, Connecticut 06095 Telephone 860-298-9692 Facsimile 860-298-6399

TRC Project No. 162662.00190.000408

August 2014

TABLE OF CONTENTS

SECT:	<u>ION</u>	<u>PAGE</u>
1.0	INTRODUCTION	1-1
2.0	SITE SETTING AND BACKGROUND INFORMATION	2-1
3.0	BASIS FOR INVESTIGATION	3-1
4.0	INVESTIGATION METHODS	4-1
4.1	Sample Grid Establishment	4-1
4.2	<u>-</u>	
4.3	Grid-Based Soil Sampling	
4.4	Groundwater Sampling	
4.5	Quality Assurance/Quality Control	
5.0	INVESTIGATION RESULTS	5-1
5.1	Data Screening Criteria	5-1
5.2	Historical Sampling Location Results	
5.3	Grid-Based Sampling Results	5-2
5.4	QA/QC Sample Results	5-4
6.0	INTERPRETATION, CONCLUSIONS AND RECOMMENDATIONS	6-1
6.1	Nature and Extent of Contamination	6-1
6.2	Post-Treatment Soil Characterization	6-2
6.3	Revised Conceptual Site Model	6-3
6.4	Conclusions and Recommendations	6-3

i

TABLE OF CONTENTS (continued)

TABLES

- 1 Soil, Groundwater and QA/QC Blank Sample Summary
- 2 Summary of OVA Readings and Observations Eastern Grid
- 3 Summary of OVA Readings and Observations Western Grid
- 4 Geoprobe Groundwater Sampling Information
- 5 Summary of Pre-Treatment and Post-Treatment Sample Results
- 6 Eastern Grid Soil Sample Results
- 7 Western Grid Soil Sample Results
- 8 Groundwater Sample Results
- 9 Field Blank and Trip Blank Sample Results

FIGURES

- 1 Site Location Map
- 2 Area 29 Geoprobe Grid Locations
- Area 29 Geoprobe and Soil Sample Locations Superimposed Over Historic Soil Remediation Areas
- 4 Area 29 Groundwater Sample Locations
- 5 Area 29 Soil Sample Results above Comparison Criteria
- Area 29 Groundwater Sample Results above Comparison Criteria and Total BTEX Isoconcentrations

APPENDICES

A Excerpts from Laboratory Data Packages

1.0 INTRODUCTION

This Remedial Enhancement Investigation (REI) Report has been prepared to document soil and groundwater investigations conducted in February and April 2014 at Area 29, the Fire Training Area, at the Federal Aviation Administration (FAA) William J. Hughes Technical Center (Technical Center), located at the Atlantic City International Airport in New Jersey (see Figure 1). These investigations were conducted to determine if residual soil contamination may be contributing to the continuing presence of benzene, toluene, ethylbenzene and xylene (BTEX) in groundwater at the site and if so, to define the nature and extent of that contamination for the purpose of implementation of remedial enhancements that would provide treatment of the contamination at its source.

2.0 SITE SETTING AND BACKGROUND INFORMATION

Area 29 is located northeast of the Atlantic City I nternational Airport runways and southwest of White Horse Pike, as indicated in Figure 1. The site was constructed in the early 1970s for the training of airport firefighting personnel. The facility consisted of a circular burn area approximately 150 feet in diameter, a small concrete burn pad, two aboveground fuel tanks on a small hill, and two underground tanks for the collection of runoff from the burn pads. Full-scale aircraft test burns were conducted on the large circular burn area, while smaller fuel fires were extinguished on the concrete pad. An underground drain system was used to collect runoff from the circular burn area and divert it to a 10,000-gallon underground circular storage tank. Runoff from the concrete pad was collected in a 5,000-gallon underground storage tank. Both of these tanks were emptied, removed, and disposed of off site in an environmentally safe manner in December 1988.

The Environmental Investigation (EI) identified the presence of contaminants in surface soil, subsurface soil, and groundwater at the site. Polychlorinated biphenyls (PCBs) and total petroleum hydrocarbons (TPH) were detected at levels exceeding cleanup criteria in surface and subsurface soils. A clay layer found at 10 to 14 feet below grade over much of the western and central portions of the site resulted in a perched groundwater condition. The intervening clay layer separates the perched groundwater from the true water table aquifer (shallow aquifer) in a portion of Area 29. Volatile organic compounds (VOCs) were detected in perched groundwater at levels exceeding state or federal drinking water standards (maximum contaminant levels or MCLs) or New Jersey groundwater quality standards (GWQS).

The Area 29 Record of Decision (ROD) was signed on September 20, 1996, documenting a remedy that included the excavation and off-site disposal of PCB-contaminated and TPH-contaminated soil and the extraction and treatment of VOC-contaminated perched groundwater. Excavation and off-site disposal of 4,041 cubic yards of contaminated material was completed in 2001. The soil remediation activities were conducted based on a soil PCB cleanup level of 2 parts per million (ppm) and a TPH cleanup level of 10,000 ppm. Demolition, removal and off-site disposal of debris from the circular burn pad and the former concrete pad was also completed. The groundwater treatment system became operational in July 2004.

In 2010 and 2011, the potential use of surfactant as a treatment enhancement in the area of the perched groundwater impacts was evaluated through the performance of a treatability study a, wb

and subsequent pilot test of surfactant application. Post-application groundwater monitoring indicated a decreasing trend in VOC influent levels. However, it was hypothesized that the root mat associated with the phragmites in the sprinkler area may have limited the infiltration of the surfactant. In fall 2012, the phragmites root mat was removed and the area was backfilled with sand. A second round of pilot study surfactant application was performed in June 2013, with surfactant injected directly into well 29-EW1 and applied via sprinkler in the former burn pad area. Total VOC levels in the treatment system influent decreased from an average of approximately 150 parts per billion (ppb) prior to the pilot study to less than 50 ppb in early 2014, after the completion of the second phase of the pilot study. Also, since 2012, only one monitoring well, 29-MW7S, has exhibited contaminants above ROD-based cleanup goals.

3.0 BASIS FOR INVESTIGATION

Based on a review of the groundwater monitoring data collected following the pilot-scale testing, it was suspected that residual soil contamination could be contributing to the continued presence of BTEX in groundwater extracted from the site. Therefore, soil remediation documentation prepared by Horne Engineering Services, Inc. (Horne; the remediation construction contractor at Area 29), groundwater remediation performance testing results, and previous limited Geoprobe® soil/groundwater results were reviewed to determine where residual soil contamination could exist. This evaluation indicated the possible presence of residual BTEX contamination in soils in two distinct areas of the site: the former underground piping, which transported fuel from the two former aboveground storage tanks to the large burn pad, and the former 10,000-gallon underground storage tank area, which received waste runoff from the large burn pad. Therefore, additional Geoprobe® soil and groundwater sampling was conducted in these two targeted areas. Also included in the scope of work was the resampling of three locations (29-GP-BT4, 29-GP-BT6, and 29-GP-BT7) located within the surfactant pilot-scale test area that exhibited the highest total combined concentrations of diesel range organics (DRO) and gasoline range organics (GRO) during previous bench-scale soil sampling activities (i.e., prior to pilot-scale surfactant application). In these three pre-treatment samples, collected at depths of 5 to 6 feet, 6 to 8 feet, and 5 to 7 feet below grade, respectively, the combined DRO/GRO concentrations ranged from 720 to 3,040 ppm.

4.0 INVESTIGATION METHODS

To evaluate the potential presence of residual contamination at levels that could be impacting groundwater quality, TRC established 25-foot sampling grids in the former underground piping area and in the former 10,000-gallon UST area. Direct push Geoprobes[®] were used to collect soil and groundwater samples from the grid points. In addition, subsurface soil samples were collected from the former sample locations where elevated DRO and GRO concentrations were identified. Details of the investigation methods are provided below.

4.1 Sample Grid Establishment

Two separate sampling grids were established. The sampling grid in the area of the former 10,000 gallon UST was referred to as the eastern grid and the grid in the area of the former underground piping was referred to as the western grid. The grid spacing (25 feet) was the same as that used during the 2001 soil excavation activities at the site. The eastern grid was 75 feet by 150 feet in areal extent. The western grid was originally established to be 100 feet by 200 feet in aerial extent, but was later expanded along its southwestern edge, based on sample results. The grid was established by determining the coordinates of the four outer boundary corners (New Jersey Plane Coordinate System NAD 83) of each grid area utilizing AutoCAD. The coordinates were provided to Adams, Rehmann & Heggan of Hammonton, New Jersey, a New-Jersey-licensed surveyor, who established the outer boundaries of the grids and grid nodal points (25-foot spacing) within the grid boundaries with wooden stakes. The grid boundary coordinates and layouts are indicated on Figure 2. An extension of the western grid was achieved by field measuring the additional step-out grid locations. The historical sample locations were located in the field by the surveyor based on sample location coordinates documented during the bench-scale testing program. The historical sample locations 29-GP-BT4, 29-GP-BT6 and 29-GP-BT7 are shown on Figure 2.

Following the establishment of the sampling grids, TRC utilized a geophysical contractor, EnviroProbe Services, Inc. of Moorestown, New Jersey, to mark subsurface utilities in the study area. TRC also utilized as-built drawings of the remediation system that show the locations of buried electrical and water lines to aid in subsurface utility location. Based on the presence of subsurface utilities in the western grid area, four western grid Geoprobe[®] locations (29-WGQ27, 29-WGR27, 29-WGS28, and 29-WGU29) were slightly adjusted in the field. The final Geoprobe[®]

locations are indicated in Figure 3. Also included on Figure 3 is the 2001 soil sampling and remediation grids and the excavation depths (in feet) for each grid below the original land surface.

4.2 <u>Historical Location Soil Sampling</u>

Geoprobe® soil sampling was conducted at the three historical sample locations by a New Jersey-licensed driller, East Coast Drilling, Inc. (ECDI) of Moorestown, New Jersey, working under the oversight of TRC personnel. Soil samples were collected from the historical sample locations (29-GP-BT4, 29-GP-BT6, and 29-GP-BT7) on February 14, 2014. Table 1 presents a summary of the soil boring samples collected, the sample depth and the analyses performed on each sample. The historical sample locations that were resampled in this study are indicated on Figure 3. One of the locations, 29-GP-BT4, is located within the former burn pad area, while the other two locations, 29-GP-BT6 and 29-GP-BT7, are located west of the former burn pad area. 29-GP-BT6 is located in the vicinity of the former underground piping.

The objective of advancing the Geoprobe® soil borings was to resample historical sample locations that exhibited elevated DRO/GRO concentrations to determine the effectiveness of the previous surfactant applications. The soil borings were advanced using Geoprobe® direct-push techniques with Macro-Core® samplers to the targeted depth intervals, as previously described in Section 3. TRC personnel recorded the depth of the recovered sample, the geologic stratigraphy observed, and the level of organic vapors measured using an organic vapor analyzer (OVA). The measured OVA readings at the three sample locations/intervals were as follows:

Sample Location	OVA Reading (ppm)
29-GPBT4(5-6')	7.2
29-GPBT6(6-8')	343.1
29-GPBT7(5-7')	2.2

Soil samples were collected for chemical analysis from these targeted depth intervals. Soil samples collected for VOC analysis consisted of a grab sample collected directly from the Macro-Core[®] using a Terra Core[®] soil sampling device and EPA SW-846 field sample collection Method 5035. Soil samples were then collected for GRO and DRO analysis by placing soil from the Macro-Core[®] in a decontaminated stainless steel bowl, homogenizing it with a decontaminated stainless steel spoon and then placing it into the laboratory-supplied containers. The soil boring samples were submitted to TestAmerica Edison of Edison, New Jersey, a New Jersey-certified

laboratory, for analysis of Target Compound List (TCL) VOCs, GRO and DRO. TCL VOC analysis was by EPA Method 8260C while GRO and DRO analyses were by Method 8015D.

4.3 <u>Grid-Based Soil Sampling</u>

Grid-based Geoprobe[®] soil sampling was conducted by ECDI under TRC oversight. Soil samples were collected from 28 locations in the eastern grid on February 11, 2014, while soil samples were collected from 45 locations in the western grid on February 12 and February 14, 2014. On April 1, 2014, the western grid was expanded with four additional Geoprobe[®] locations and the collection of an additional soil sample from one of those locations. The soil boring samples collected and the analyses performed on each sample are summarized in Table 1. Geoprobe[®] locations and soil sample locations are shown on Figure 3.

The soil borings were advanced using Geoprobe® direct-push techniques with a Macro-Core® sampler. Continuous Macro-Cores® were collected using five-foot-long sampling tubes to a depth of 15 feet below grade for the eastern grid or 12 feet below grade for the western grid, or to the top of the confining clay unit, whichever came first. Following recovery of each Macro-Core® tube, the depth of the recovered sample, the amount of recovered sample, and the observed geologic stratigraphy were recorded. The contents of each Macro-Core® was also screened with an OVA. The most contaminated interval was identified based on the OVA screening results, visual staining and/or odors and a soil sample was collected from that interval for analytical testing. OVA screening results, soil sample depth, other observations (i.e., petroleum odors, staining or sheens, and estimated depths to perched water), and sample recoveries are noted in Tables 2 and 3 for the eastern and western grid areas, respectively. If a contaminated interval could not be determined from these field observations, the sample was collected at the water table. Soil samples collected for VOC analysis consisted of a grab sample collected directly from the Macro-Core® using a Terra Core® soil sampling device and EPA SW-846 field sample collection Method 5035. Each of the selected soil samples was analyzed for TCL VOCs using EPA Method 8260C.

Based on elevated OVA readings (i.e., in the 100s of ppm) measured at Geoprobe[®] locations along the southwestern edge of the western grid area (i.e., at grid points 29-WGQ22 through 29-WGQ27), a decision was made to extend the grid to the southwest. These additional Geoprobe[®] locations (29-WGP23 through 29-WGP26) are shown on Figure 3. Because OVA readings were not as high at these additional Geoprobe[®] locations (i.e., generally less than 100

ppm), a soil sample was collected for chemical analysis at only one location, 29-WGP26, which exhibited the highest OVA readings of the step-out locations. OVA readings and other observations (e.g., petroleum odors, staining or sheens) for the expanded western grid points are provided on Table 3.

In general, most Geoprobe® locations exhibited signs of subsurface contamination (i.e., elevated OVA readings, odors and/or staining/sheens). Clay was also encountered at most locations, typically at depths ranging from approximately 6 to 13 feet below ground surface (bgs). The greater depths to clay were measured at eastern grid locations. At some western grid locations, intervening clay lenses were also identified. The depth to groundwater (estimated by the depth at which wet soils were encountered) generally ranged from approximately 0.25 to 2.5 feet bgs, with the exception of a few locations in the western grid area where wet soils were not encountered until depths of approximately 5.5 to 7.5 feet bgs and 8 to 10 feet bgs.

4.4 Groundwater Sampling

Groundwater samples were proposed to be collected from approximately one-quarter of the most contaminated grid-based Geoprobe[®] locations, with the locations to be identified based on OVA readings, visual staining and/or observed odors. As a result, groundwater samples were collected at six of the eastern grid locations and nine of the western grid locations on April 1, 2014. The groundwater samples collected and the analyses performed on each sample are summarized in Table 1. The groundwater sample locations are indicated on Figure 4.

The groundwater samples were collected using a decontaminated four-foot long stainless steel groundwater sampling screen driven to the desired sample depth by ECDI using Geoprobe® direct-push methods. Once the desired sample depth was reached, a retractable sleeve within the stainless steel sampler was withdrawn, exposing the screen to the groundwater. Disposable polyethylene tubing was inserted into the hollow drive rods and the tubing intake was set at the midpoint of the screen. A peristaltic pump was then used to purge the groundwater by pumping three screenpoint sampler volumes, during which time groundwater water quality indicator parameters were monitored with a YSI 600XL flow-through meter. Table 4 presents field parameters measured at the time of sampling, as well as observations of odors and sheens. Each VOC sample was obtained from the downhole tubing prior to its passing through the peristaltic pump gears. This was achieved by pumping water into the tubing, then turning off the pump, then

pulling the tubing from the sampler and drive rods, then gravity-draining the contents of the tubing into the VOC sample containers by breaking the seal between the sample tubing and the peristaltic pump gear housing. The groundwater samples were analyzed for TCL VOCs using Method 8260C.

As indicated in Table 4, each of the groundwater samples exhibited strong petroleum odors and three of the samples (29-EG-I15GW (5-9), 29-WG-R24GW (8.5-12.5), and 29-WG-R26GW (6.5-10.5) exhibited a sheen on the surface of the sample. The depth intervals over which the groundwater samples were collected ranged from 4- to 8-feet to 8.5- to 12.5-feet.

4.5 Quality Assurance/Quality Control

Quality assurance/quality control (QA/QC) samples of soil and groundwater were collected for DRO, GRO and/or EPA Method 8260C analyses. The QA/QC samples included blind duplicates, field blanks, trip blanks and matrix spike/matrix spike duplicates (MS/MSDs). A total of 74 soil samples and 14 groundwater samples were collected, resulting in the collection of 6 blind duplicate samples, 1 trip blank sample, 4 field blank samples, and 6 MS/MSD samples. Field blank samples were collected during the soil sampling effort by pouring laboratory-supplied distilled, deionized water through a clean unused Macro-Core®. A field blank sample was collected during the groundwater sampling effort by running laboratory-supplied distilled, deionized water through disposable polyethylene tubing that is used to collect the groundwater samples. A trip blank and a temperature blank accompanied the groundwater sample cooler. Blind duplicate samples and MS/MSD samples were collected at a rate of one per 20 soil or groundwater samples. All samples were maintained under strict chain-of-custody protocols. VOC samples were placed on ice in coolers immediately following collection, and custody seals were placed on all coolers prior to shipment via FedEx to the analytical laboratory. All chemical analyses were performed by TestAmcrica Edison of Edison, New Jersey.

The only decontamination procedure utilized in the field investigation was the decontamination of Macro-Core[®] drive rods, Macro-Core[®] core barrels and groundwater sampling screens between locations by cleaning the drive rods, core barrels and screens with clean water and Alconox.

•

5.0 <u>INVESTIGATION RESULTS</u>

5.1 <u>Data Screening Criteria</u>

The Area 29 ROD did not include contaminant-specific soil remediation goals for volatile organics. A 10,000 ppm total organics soil remediation level was established in the ROD based on New Jersey soil cleanup criteria available at the time. Therefore, for the purposes of evaluating the VOC field sampling results, soil data were compared to contaminant-specific New Jersey Soil Remediation Standards (NJSRS) based on direct contact under non-residential exposure conditions and default impact to groundwater (IGW) soil screening levels. Residential NJSRS were also considered, although the Area 29 ROD is based on future non-residential use of the site. Groundwater samples were evaluated relative to the groundwater remedial goals established in the Area 29 ROD. For detected constituents for which no ROD-based cleanup goals exist, the results were compared to state and federal primary drinking water standards (maximum contaminant levels or MCLs) and New Jersey Groundwater Quality Standards (GWQS).

5.2 Historical Sampling Location Results

A summary of the analytical results for the soil sampling conducted in 2014 at the historical sample locations is presented in Table 5, along with the historical sample results. In the current soil samples, GRO was detected in two of the three samples at concentrations ranging from 2.4 to 800 ppm while DRO was detected in each of the three samples (and duplicate) at concentrations ranging from 0.028 ppm to 1.4 ppm. The highest levels of contamination were detected in sample 29-GPBT6(6-8'), which was also the sample interval that exhibited the highest OVA readings of the three targeted sample intervals. This sample location is located west of the burn pad area, in the former underground piping area. When compared to the 2010 pre-surfactant application results, the recent results are two or more orders of magnitude less than the historic sample results, with the exception of GRO at 29-GPBT6(6-8'), which is slightly higher than the pre-treatment result. None of the GRO or DRO results exceeded the 10,000 ppm total organics soil cleanup level established in the Area 29 ROD.

The VOC analyses of the historical sample locations indicates that residual contaminant levels do not exceed current NJSRS. Total xylenes was detected in one sample, 29-GPBT6(6-8'), at a level that exceeds the default IGW soil screening level.

5.3 <u>Grid-Based Sampling Results</u>

Summaries of the analytical results for the soil samples collected within the eastern grid and western grid are presented in Tables 6 and 7, respectively. A summary of the analytical results for the groundwater samples collected within the eastern grid and western grid are presented in Table 8. Constituents detected in the soil at levels exceeding data screening criteria combined with the 2001 soil sampling and remediation grids and the excavation depths (in feet) for each grid are indicated on Figure 5. Constituents detected in the groundwater samples at levels exceeding ROD-based cleanup criteria and total BTEX isoconcentration contour lines are indicated on Figure 6.

In the eastern grid, VOCs detected in the soil samples include petroleum-related compounds, two chlorinated VOCs (1,1,1-trichloroethane and 1,1,2,2-tetrachloroethane), acetone, carbon disulfide, and methyl acetate. No samples exceeded the ROD-based 10,000 ppm total organics soil cleanup level or the non-residential NJSRS. Only one constituent, 1,1,2,2tetrachloroethane, was detected above the residential NJSRS and it was detected above the standard in only one sample. It was present in sample 29-EGI15(3') at a level of 1.5 ppm, compared to the residential NJSRS of 1.0 ppm. Four constituents were detected above default IGW screening levels, including benzene, ethylbenzene, total xylenes, and 1,1,2,2tetrachloroethane. Benzene, ethylbenzene and/or total xylenes were present above default IGW criteria at eleven sample locations, predominantly those located in the southern portion of the sample grid, while 1,1,2,2-tetrachloroethane exceeded IGW screening levels at only two locations (one of which also exhibited exceedances of the petroleum-related compounds). Benzene was the sole compound present above default IGW screening levels at seven of eleven locations. Because many of the samples required dilution, benzene detection limits exceeded default IGW criteria at nine additional locations (29-EGF12(1.5'), 29-EGF13(6.5'), 29-EGF15(1.5'), 29-EGG12(6'), 29-EGG14(6'), 29-EGH13(3'), 29EGH14(6'), 29-EGH15(2'), and 29-EGI11(6')) that did not exhibit IGW screening level exceedances for any other constituents.

In the western grid, VOCs detected in the soil samples include petroleum-related compounds, acetone, and carbon disulfide. No samples exceeded the ROD-based 10,000 ppm total organics soil cleanup level. Benzene was the only constituent detected above the NJSRS. Benzene was detected in sample 29-WGR26(9.0') at a concentration of 13 ppm, which exceeds the non-residential NJSRS of 5 ppm and the residential NJSRS of 2 ppm. Constituents detected

above default IGW screening levels were limited to BTEX compounds, with most samples exhibiting more than one compound above the screening levels. They were present above default IGW criteria at twenty sample locations, predominantly those located in the central and southwestern portions of the sample grid area. Because many of the samples required dilution, benzene detection limits exceeded default IGW criteria at seven additional locations (29-WGQ27(6.5'), 29-WGS28(7.0'), 29-WGT23(7.5'), 29-WGT24(7.5'), 29-WGT27(6.5'), 29-WGT27(6.5'),

Five groundwater samples were collected from eastern grid locations while nine groundwater samples were collected from western grid locations. VOCs detected in the groundwater samples included BTEX compounds, other petroleum-related contaminants, 1,1-dichloroethane, 1,1-dichloroethane, chloroethane, methyl ethyl ketone (MEK or 2-butanone), methyl isobutyl ketone (MIBK or 4-methyl-2-pentanone), and acetone. The only groundwater contaminants detected above the ROD-based cleanup levels were the BTEX compounds. Two to four BTEX compounds were detected at concentrations exceeding ROD-based cleanup levels in each of the groundwater samples that were collected. The highest concentrations of BTEX compounds were detected in the western grid samples. The groundwater samples collected from the three locations closest to the former underground fuel lines that ran from the former aboveground fuel tanks to the former circular burn pad area exhibited the highest total BTEX concentrations, ranging from 8,330 ppb to 9,420 ppb.

For those detected constituents for which cleanup standards were not established in the ROD, 1,1-dichloroethene was the only detected constituent for which state and federal MCLs have been established. 1,1-Dichloroethene was detected in two groundwater samples at estimated concentrations of 2.3 and 2.5 ppb, both of which are less than the federal MCL of 7 ppb but above the state MCL of 2 ppb. These samples were collected at grid locations 29-EGG17 and 29-EGH17, both located at the southern end of the eastern sampling grid. For the remaining detected compounds, chloroethane was the only compound detected at a level that exceeded the New Jersey GWQS. Chloroethane was detected in sample 29-EG-H17GW(5-9) at a concentration of 33 ppb, which exceeds the GWQS of 5 ppb.

The eastern grid groundwater sample locations included the locations that exhibited the highest benzene soil concentration (29-EGH17), ethylbenzene soil concentration (29-EGG13) and highest total xylenes and 1,1,2,2-tetrachloroethane concentrations (29-EGI15) for the eastern grid

soil samples. Benzene, ethylbenzene and total xylenes were detected above ROD-based cleanup criteria in the corresponding groundwater samples. 1,1,2,2-Tetrachloroethane, however, was not detected in the groundwater sample collected at 29-EGI15. The highest total concentration of BTEX compounds in groundwater in the eastern grid (2,803 ppb) was detected at sample location 29-EGH17, which is located at the southern end of the sampling grid, near the eastern edge of the former circular burn pad.

The western grid groundwater sample locations included the locations that exhibited the second-highest benzene, ethylbenzene and total xylenes soil concentrations (29-WGQ25) and the highest toluene soil concentration (29-WGS26) for the western grid soil samples. A groundwater sample was collected at the western grid sample location that exhibited the highest benzene, ethylbenzene and total xylenes soil concentrations (29-WGR26), however, the groundwater results exhibited only the fourth highest total BTEX concentration of 7,650 ppb for the western grid samples. As stated previously, the highest BTEX groundwater concentrations were detected in the western grid samples located closest to the former underground fuel lines.

5.4 QA/QC Sample Results

Duplicate soil and groundwater sample results are presented in Tables 5 through 8, adjacent to the original sample results. In general, the duplicate results correlate well with the original sample results.

Field blank and trip blank results are presented in Table 9. No constituents were detected in the field blank or trip blank samples.

For the soil analytical results, the acetone results for some soil samples were qualified due to the presence of acetone in the associated laboratory blank.

.

6.0 <u>INTERPRETATION, CONCLUSIONS AND RECOMMENDATIONS</u>

The following sections discuss both the presence and distribution of residual soil and groundwater contamination at Area 29 and the effectiveness of the surfactant application based on pre-treatment and post-treatment soil samples collected from the treatment area.

6.1 Nature and Extent of Contamination

The Area 29 remedial enhancement investigation indicates that residual soil contamination is present at levels that could continue to impact groundwater quality in the areas of former underground piping, near the former 10,000-gallon underground storage tank area, and in the eastern portion of the former circular burn pad area. Petroleum odors, staining and/or sheens were commonly noted during the advancement of Geoprobe® soil borings and groundwater sample screens in both investigation areas. As shown on Figures 5 and 6, BTEX compounds were commonly detected in grid area soils at levels exceeding IGW soil screening levels and groundwater impacts above ROD-based cleanup levels remain in these areas. Contaminant levels are generally higher in the western grid samples than in the eastern grid samples. All of the soil samples collected from within the footprint of the 2001 soil remediation area (with the exception of western grid soil samples WG-U28 and WG-U29) were collected from beneath the final depth of excavation. A number of other soil samples which exceeded the IGW soil screening levels were collected from areas outside of the 2001 soil excavation footprint, especially in the area of the former underground piping and the eastern portion of the former circular burn pad. Similarly, groundwater samples collected from within the 2001 soil remediation footprint which exceeded the ROD-based cleanup levels were collected from intervals beneath the final depth of excavation. Furthermore, the groundwater samples which exhibited the highest total BTEX concentrations were collected from areas outside the 2001 excavation footprint.

In the eastern grid, soil impacts were more prevalent in the southern half of the grid and in the two soil samples immediately adjacent to the piping that led from the former circular burn pad area to the former 10,000 gallon underground storage tank. Groundwater samples collected from the eastern grid confirm that BTEX compounds are still present in the groundwater in these impacted soil areas. 1,1,2,2-Tetrachloroethane was detected in two soil samples from the eastern grid area but was not detected in groundwater samples from this area, indicating that, where present, 1,1,2,2-tetrachloroethane is not adversely impacting groundwater quality. Its presence in

the soil at concentrations below non-residential NJSRS but above residential NJSRS is consistent with the non-residential basis of the Area 29 ROD. 1,1-Dichloroethene was detected in two groundwater samples, both located at the southern end of the eastern sampling grid, at estimated concentrations that slightly exceed the state MCL of 2 ppb. However, there is no groundwater cleanup standard established in the ROD for this compound.

In the western grid, soil impacts were most prevalent immediately to the north and south of the former underground fuel lines, and extending slightly further to the south than to the north. Groundwater samples collected from the western grid confirm that BTEX compounds are still present in the groundwater in these impacted soil areas. The greatest impacts were noted in the groundwater samples located closest to the former underground fuel lines. Historically, the remedial system extraction well (29-EW1) and Area 29 monitoring well (29-MW7S) located to the south of the former underground fuel lines have exhibited the highest benzene levels of the Area 29 extraction and monitoring wells.

An estimation of the volume of soils that exceed the default IGW soil screening levels (and presumably continue to impact groundwater at Area 29) can be made by evaluating the aerial and vertical extent of soil contamination as shown on Figure 5 and included on Tables 2 and 3. For the eastern grid, which has yet to be fully delineated, an approximate 80 foot x 60 foot area with impacted soils extending to a depth of approximately 10 feet is present. This volume of soil equals approximately 1,800 cubic yards (yd³). The soil impacts in the western grid area are better delineated and are about 160 feet long by 90 feet wide by approximately 10 feet deep. These dimensions equal approximately 5,300 yd³ for the western grid. Therefore, an estimate of soils that exceed the default IGW soil screening levels for both grid areas at Area 29 is greater than 7,000 yd³.

6.2 Post-Treatment Soil Characterization

The collection of soil samples from three locations that exhibited elevated pre-treatment GRO and DRO levels generally indicates that the application of surfactant has been successful in reducing petroleum-related contaminant levels in the soils. With the exception of GRO in one soil sample, GRO and DRO levels were reduced by two levels of magnitude or more. Similarly, VOC levels at the resampled locations were below default IGW screening criteria for all analytes except one (total xylenes) at one sample location.

6.3 Revised Conceptual Site Model

Based on the results of the remedial enhancement investigations, it appears that residual soil contamination that complies with the Area 29 ROD and is located to the southwest of the pilot-scale surfactant application areas is continuing to act as a source of groundwater impacts to the western grid area. On-going groundwater extraction within the perched zone adjacent to the former circular burn pad area is likely pulling impacted groundwater back towards the former burn pad, resulting in continued subsurface impacts to the west and southwest of the former burn pad, as contaminated groundwater from the untreated area overlaps areas of previous surfactant application. Previously treated sample locations that are located to the west-northwest of the former circular burn pad or in the eastern grid, outside of this residual untreated contamination, exhibited significant reductions in soil contaminant levels. However, soil contamination in the southern portion of the eastern grid and western grid areas and continued detections of elevated BTEX levels in groundwater remain within the eastern and western grids, suggesting additional treatment of these areas may be required.

6.4 Conclusions and Recommendations

Additional remediation will be required at Area 29 before the site can be closed out under the Superfund program. The detection of BTEX components at concentration exceeding ROD-based cleanup criteria at each of the fourteen groundwater sample locations indicates that additional groundwater remediation is necessary and that residual petroleum-contaminated soils continue to impact groundwater quality.

It is recommended that the results of this study be used in designing hot spot or widespread soil excavation (and dewatering), and/or full-scale application of surfactant, or other bioamendment, at Area 29 to address these residually-contaminated soils. Soils to the southwest of the previous surfactant application areas need to be incorporated within the scope of future soil excavation and/or surfactant/bioamendment applications to ensure that these impacted areas are adequately addressed. Also, soils within the eastern grid area will require additional remediation. Based on the presence of soil and groundwater impacts above applicable screening criteria at the southernmost eastern grid sample locations, additional soil and groundwater sampling further to the south may be appropriate to ensure the full delineation of soil and groundwater impacts prior

to the design of the full-scale enhanced remediation. The additional sampling work can utilize a Geoprobe[®] dir ect push rig equipped with a Laser Induced Fluorescence/Ultraviolet Optical Scanning Tool (LIF/UVOST[®]) and/or Membrane Interface Probe (MIP) which can efficiently conduct qualitative vertical profiling for VOCs such as petroleum and chlorinated hydrocarbons in both the vadose and saturated zones. The LIF/MIP work would be supplemented with additional soil and groundwater samples collected for analytical testing.

Furthermore, the installation of additional groundwater extraction well(s) may be appropriate to supplement any future soil excavation and/or full-scale surfactant/bioamendment application as there currently is additional flow capacity (approximately 20 gallons per minute) available in the Area 29 groundwater remediation system treatment plant. The additional groundwater extraction well(s) could provide another groundwater contaminant mass removal point(s), and potentially also act as a surfactant/bioamendment injection point(s).

TABLE 1 SOIL, GROUNDWATER AND QA/QC BLANK SAMPLE SUMMARY

February - April 2014
Area 29 Remedial Enhancement Investigation
FAA William J. Hughes Technical Center

SAMPLE DATE	DEPTH ¹		
	DEDTIN:		
	DERIH	ANALYSIS ²	NOTES ³
	. 1. 1918 seller se		
<u>§</u>			
ATIONS			
			MS/MSD Sample
			D. II. I. (COORDITIS III)
02/14/14	5-7	TCL VOCs; GHO; DHO	Duplicate of 29GBPT(5-7')
00/11/14	0.10	TOL VOC-	
		·	
			
			+
			
			+

			+
		·	
· · · · · · · · · · · · · · · · · · ·			
		·· · · · · · · · · · · · · · · · · · ·	
			MS/MSD Sample
		***************************************	- WOMED CAMPIC
			· · · · · · · · · · · · · · · · · · ·
			Duplicate of 29-EGI14(9.6')
			- Sapinatio of the Tarri No.07
04/01/14	5.75	TCI VOCe	
			
		***************************************	+
			Duplicate of 20 WCCC5(9 5)
			Duplicate of 29-WGQ25(8.5')
			MS/MSD Sample
			<u> </u>
			
		TCL VOCs	
		TCL VOCs	
02/12/14	6.0	TCL VOCs	MS/MSD Sample
02/12/14	2.5	TCL VOCs	i
	02/14/14 02/14/14 02/14/14 02/14/14 02/14/14 02/14/14 02/11/14 02/12/14	02/14/14 5-6 02/14/14 6-8 02/14/14 5-7 02/14/14 5-7 02/14/14 5-7 02/14/14 5-7 02/11/14 5-7 02/11/14 1.5 02/11/14 6.5 02/11/14 1.5 02/11/14 6.0 02/11/14 6.0 02/11/14 6.0 02/11/14 6.0 02/11/14 6.0 02/11/14 6.0 02/11/14 6.0 02/11/14 6.0 02/11/14 6.0 02/11/14 6.0 02/11/14 6.0 02/11/14 6.0 02/11/14 3.0 02/11/14 3.0 02/11/14 3.0 02/11/14 3.0 02/11/14 6.0 02/11/14 6.0 02/11/14 6.0 02/11/14 6.0 02/11/14 3.0 02/11/14 3.0 02/11/14 3.0 02/11/14 3.0 02/11/14 3.0 02/11/14 3.0 02/11/14 3.0 02/11/14 6.0 02/11/14 6.0 02/11/14 6.0 02/11/14 1.25 02/11/14 9.6 02/11/14 9.6 02/11/14 9.6 02/11/14 1.25 02/11/14 1.25 02/11/14 1.25 02/11/14 1.25 02/11/14 1.25 02/11/14 1.25 02/11/14 1.25 02/11/14 1.06 02/11/14 1.25 02/11/14 1.06 02/11/14 1.06 02/11/14 1.06 02/11/14 1.06 02/12/14 6.6 02/12/14 6.6 02/12/14 6.5 02/12/14 6.5 02/12/14 6.5 02/12/14 6.5 02/12/14 6.5 02/12/14 6.5 02/12/14 6.5 02/12/14 6.5 02/12/14 6.5 02/12/14 6.5 02/12/14 6.5 02/12/14 6.5 02/12/14 6.6	02/14/14 5-6 TCL VOCS; GRO; DRO 02/14/14 6-8 TCL VOCS; GRO; DRO 02/14/14 5-7 TCL VOCS; GRO; DRO 02/14/14 5-7 TCL VOCS; GRO; DRO 02/11/14 6-7 TCL VOCS 02/11/14 1.5 TCL VOCS 02/11/14 1.5 TCL VOCS 02/11/14 6.5 TCL VOCS 02/11/14 1.5 TCL VOCS 02/11/14 6.0 TCL VOCS 02/11/14 9.0 TCL VOCS 02/11/14 9.0 TCL VOCS 02/11/14 2.0 TCL VOCS 02/11/14 2.0 TCL VOCS 02/11/14 2.0 TCL

TABLE 1 SOIL, GROUNDWATER AND QA/QC BLANK SAMPLE SUMMARY

February - April 2014

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

SAMPLE	SAMPLE			
IDENTIFICATION	DATE	DERTH ¹	ANALYSIS ²	NOTES ³
		- which		
WESTERN GRID (CONTINUI	ED)			
29-WGS21(1.0')	02/12/14	1.0	TCL VOCs	
29-WGS22(8.5')	02/12/14	8.5	TCL VOCs	
29-WGS23(10.5')	02/12/14	10.5	TCL VOCs	
29-WGS24(6.5')	02/12/14	6.5	TCL VOCs	
29-WGS25(6.0')	02/12/14	6.0	TCL VOCs	
29-WGS26(6.0')	02/12/14	6.0	TCL VOCs	
29-WGS27(6.0')	02/12/14	6.0	TCL VOCs	
29-WGS28(7.0')	02/12/14	7.0	TCL VOCs	
29-WGS29(2.3')	02/12/14	2.3	TCL VOCs	
29-WGT21(10.5')	02/14/14	10.5	TCL VOCs	
29-WGT22(7.5')	02/14/14	7.5	TCL VOCs	MS/MSD Sample
29-WGT23(7.5')	02/14/14	7.5	TCL VOCs	
29-WGT24(7.5')	02/14/14	7.5	TCL VOCs	
29-WGT24(17.5')	02/14/14	7.5	TCL VOCs	Duplicate of 29-WGT24(7.5')
29-WGT25(6.5')	02/14/14	6.5	TCL VOCs	
29-WGT26(6.5')	02/14/14	6.5	TCL VOCs	
29-WGT27(6.5')	02/14/14	6.5	TCL VOCs	
29-WGT28(6.0')	02/14/14	6.0	TCL VOCs	
29-WGT29(6.0')	02/14/14	6.0	TCL VOCs	
29-WGU21(3.0')	02/14/14	3.0	TCL VOCs	
29-WGU22(10.5')	02/14/14	10.5	TCL VOCs	
29-WGU23(11.6')	02/14/14	6.6	TCL VOCs	
29-WGU24(10.5')	02/14/14	10.5	TCL VOCs	
29-WGU25(10.5')	02/14/14	10.5	TCL VOCs	
29-WGU26(7.0')	02/14/14	7.0	TCL VOCs	
29-WGU27(7.6')	02/14/14	7.6	TCL VOCs	
29-WGU28(2.0')	02/14/14	2.0	TCL VOCs	
29-WGU29(3.0')	02/14/14	3.0	TCL VOCs	
			.00.1000	
GEOPROBE GROUNDWATE	R SAMPLES			
29-EG-G13GW (4.5-8.5)	04/14/14	4.5-8.5	TCL VOCs	MS/MSD Sample
29-EG-G15GW(4-8)	04/14/14	4-8	TCL VOCs	
29-EG-G15GW (14-18)	04/14/14	4-8	TCL VOCs	Duplicate of 29-EG-G15GW(4-8)
29-EG-G17GW (7-11)	04/14/14	7-11	TCL VOCs	
29-EG-H17GW (5-9)	04/14/14	5-9	TCL VOCs	
29-EG-I15GW (5-9)	04/14/14	5-9	TCL VOCs	
29-WG-Q23GW (5.5-9.5)	04/14/14	5.5-9.5	TCL VOCs	
29-WG-Q24GW (4.5-8.5)	04/14/14	4.5-8.5	TCL VOCs	+
29-WG-Q25GW (5-9)	04/14/14	4.5-6.5 5-9		1.
29-WG-Q26GW (5-9)			TCL VOCs	
	04/14/14	5-9	TCL VOCs	
29-WG-R23GW (5.5-9.5)	04/14/14	5.5-9.5	TCL VOCs	
29-WG-R24GW (8.5-12.5)	04/14/14	8.5-12.5	TCL VOCs	
29-WG-R26GW (6.5-10.5)	04/14/14	6.5-10.5	TCL VOCs	
29-WG-S24GW (4.5-8.5)	04/14/14	4.5-8.5	TCL VOCs	
29-WG-S26GW (5-9)	04/14/14	5-9	TCL VOCs	
QA/QC BLANKS				
FB021114	02/11/14	NA	TCL VOCs	
B021214	02/12/14	NA	TCL VOCs, GRO, DRO	
B021414	02/14/14	NA	TCL VOCs	
B040114	04/01/14	NA	TCL VOCs	
ГВ040114	04/01/14	NA	TCL VOCs	
				

NOTES:

^{(1) -} Depths measured from ground surface (in feet)

^{(2) -} ANALYSIS CODES:

TCL VOCs: Target Compound List Volatile Organic Compounds (Method 8260C)

GRO: Gasoline-range organics (Method 8015D)

DRO: Diesel-range organics (Method 8015D)

^{(3) -} MS/MSD: Matrix Spike/ Matrix Spike Duplicate

TABLE 2 SUMMARY OF OVA READINGS AND OBSERVATIONS - EASTERN GRID

Area 29 Remediation Enhancement Investigation FAA William J. Hughes Technical Center

			Eastern Grid				
			4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Soil Sample	Approx. ³ Water Table
Boring Number		ling (ppm)	Observations ²	Depth (ft)	Recovery (ft)	Depth (ft)	Depth (ft)
	Max:	0.9	N/O, N/S	0-5	3.25		
EGF11	Average:	0.85				0.16	2.5
 	Max: Average:	0.8 0.8	N/O, N/S	5-10	2.0		
	Max:	209.5					
EGF12	Average:	192.9	Moderate PO/St	0-5	3.3	1.5	٦.
EGF12	Max:	8.5	Moderate PO/St to 7.6 ft	5-10	3.6	1.5	2.5
	Average:	6.1	moderate rojst to 7.0 it	3 10	3.0		
-	Max:	359.8 181.8	Strong PO/St/Sh	0-5	3.25		
}	Average: Max:	533.4					
EGF13	Average:	306.45	Strong PO/St/Sh	5-10	5.0	6.5	2.5
F	Max:	237.5	s				
	Average:	216.45	Strong PO/St/Sh to 12.5 ft	10-15	3.2		<u></u>
	Max:	2.5	Mild PO/St	0-5	3.25		
	Average:	2.35	171110 1 0/30		3.23		1
EGF14	Max:	253.8 128.1	Mild PO/St	5-10	5.0	8.0	
F	Average: Max:	238.5					
	Average:	222.65	Mild PO/St to 13 ft	10-15	4.0		
	Max:	13.3	Moderate PO/St	0-5	4.2		
EGF15	Average:	8.9	1.5	1.5	2		
20/25	Max:	3.8	Moderate PO/St to 9.3 ft	5-10	5.0	1.5	2
	Average:	3.7	,				ļ
-	Max:	12.3 6.95	Strong PO/Sh	0-5	2.8	 	
F	Average: Max:	244.5					,
EGF16	Average:	125.85	Strong PO/Sh 5-10 3.0 6.0	6.0	1		
T	Max:	20.8	Share = 20 /Share 12 Sh	40.45			
	Average:	12.7	Strong PO/Sh to 13 ft	10-15	4.0		
	Max:	209.5	Moderate PO/St/Sh	0-5	3.6		0.5
EGF17	Average:	106.45			3.0	6.0	
-	Max:	518 264.8	Moderate PO/St/Sh to 8.3		4.0		
	Average: Max:	1.3	ft		 	 	
F	Average:	1.2	N/O, N/S	0-5	3.25		
EGG11	Max:	0.9	,			1.5	1.5
	Average:	0.85	N/O, N/S	5-10	4.0		
	Max:	226.5	Mild PO	0-5	3.5		
EGG12	Average:	97.3		U-J	J.5	6.0	2.5
	Max:	26.8	Moderate PO to 7.3 ft;	5-10	3.1] "."	23
	Average:	16.3	mild PO to 8.1 ft				
}	Max:	333.5 287.6	Mild PO/St/Sh	0-5	3.0		
	Average: Max:	405.3]	
EGG13	Average:	225.6	Strong PO/St/Sh	5-10	4.0	6.5	0.5
r	Max:	56.3	MAIL-LOO /cv /cl	40.45		1	
	Average:	32.3	Mild PO/St/Sh	10-15	2.5		
	Max:	7.9	Mild PO/St	0-5	3.5		
<u> </u>	Average:	5.4	1 0/31				
EGG14	Max:	427	Strong PO/Sh	5-10	3.6	6.0	1.5
 	Average: Max:	394.6 177.6				-l	
	Average:	177.6	Strong PO/Sh to 10.7 ft	10-15	4.0	1	

TABLE 2 SUMMARY OF OVA READINGS AND OBSERVATIONS - EASTERN GRID

Area 29 Remediation Enhancement Investigation FAA William J. Hughes Technical Center

			Eastern Grid				
			を できる		·	Soil Sample	Approx. ³ Water Table
Boring Number	OVA Read	ling (ppm)	Observations ²	Depth (ft)	Recovery (ft)	Depth (ft)	Depth (ft)
	Max:	8.9	Mild PO/St	0-5	3.4		
	Average:	7.05	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
EGG15	Max:	495	Strong PO/St to 7.5 ft	5-10	3.2	6.0	1
-	Average: Max:	287.35 4.8					
-	Average:	4.8	Mild PO	10-15	1.0		
	Max:	74.4					
ľ	Average:	44.65	Moderate PO/St/Sh	0-5	3.4		
EGG16	Max:	39	Moderate to Strong PO/Sh	5-10	3.8	3.0	1
50070	Average:	29.75	Moderate to Strong PO/Sil	3-10	3.6	3.0	1
Ĺ	Max:	5.1	Strong PO/Sh	10-15	1.0		
	Average:	5.1	5.101161 0/511		2.0		
	Max:	38.5	Moderate PO	0-5	3.3		
	Average:	20.2					
EGG17	Max: Average:	500.7 391	Moderate PO/St/Sh	5-10	4.2	9.0	1.5
-	Max:	51.7	Moderate PO/St/Sh to		 		
-	Average:	30.9	12.6 ft	10-15	4.6		
	Max:	1.4					
FCU11	Average:	1.25	N/O, N/S	0-5	3.3	8.0	2.5
EGH11	Max:	2.4	Mild PO 6.3 to 7 ft	5-10	5.0		
	Average:	1.95	Willu PO 6.5 to 7 ft	5-10	3.0		
	Max:	410.9	Mild PO/Sh	0-5	3.5	2.5	
-	Average:	298.8					2.5
EGH12	Max:	21.8	Moderate PO/Sh	5-10	2.5		
-	Average: Max:	19.85 67	Moderate PO/Sh to 11.25				
ŀ	Average:	67	ft	10-15	2.0		į
	Max:	323.6			 		
j	Average:	165.2	St/Sh	0-5	2.9		
	Max:	310.5	54/5h 4- 5 0 ft	5.10	1.0		ŀ
EGH13	Average:	287.15	St/Sh to 6.9 ft	5-10	1.9	3.0	2.5
[Max:	1	N/O N/C	10.15	5.0		
	Average:	1	N/O, N/S	10-15	5.0		
	Max:	53.9	C+/C+	0.5	2.1		
EGH14	Average:	52.95	St/Sh	0-5	3.1	6.0	١,
EGH14	Max:	405	St/Sh to 6.8 ft	5-10	2.8	6.0	2
	Average:	252	30/31/10 0.8 /0	3-10	2.8		
L	Max:	475.9	St/Sh	0-5	3.1		1
-	Average:	433.55					<u> </u>
EGH15	Max:	74.5	St/Sh to 6.8 ft, Mild PO	5-10	3.9	2.0	1.5
-	Average: Max:	41 183	7.6 to 8.9 ft		+		
-	Average:	97.1	Mild PO to 12.5 ft	10-15	3.8		
	Max:	405.9			 		
ŀ	Average:	259.1	Mild PO/St/Sh	0-5	3.6		
ŀ	Max:	429.1	Heavily petroleum		1		
EGH16	Average:	272	impacted to 7.8 ft	5-10	3.25	6.0	2.5
F	Max:	1					
F	Average:	1	N/O, N/S	10-15	1.5		
	. Max:	318.5	A 611 4 51 551				
561147	Average:	180.1	Mild St/Sh	0-5	2.6	, _	
EGH17	Max:	311.5	Mild C+/Ch += 0 2 f+	E 10	2.5	4.5	2
	Average:	170	Mild St/Sh to 8.2 ft	5-10	3.5		

TABLE 2 SUMMARY OF OVA READINGS AND OBSERVATIONS - EASTERN GRID

Area 29 Remediation Enhancement Investigation FAA William J. Hughes Technical Center

			Eastern Grid				
Boring Number	OVA Read	ing (ppm)	Observations ²	Depth (ft)	Recovery (ft)	Soil Sample Depth (ft)	Approx. ³ Water Table Depth (ft)
	Max:	2.2	N/O, N/S	0-5	3.3		
	Average:	1.95	14/0,14/3		3.3		
EG 11 -	Max:	64.2	N/O, N/S	5-10	3.3	6.0	1
	Average:	36.15	14/0,14/3		3.3	0.0	1 1
<u> </u>	Max:	5.8	N/O, N/S	10-15	0.5		
	Average:	5.8	14,0,14,3	10-13	0.5		
	Max:	34.4	Mild PO/St/Sh	0-5	3.0		
EGI12	Average:	17.95	Milia PU/St/Sh	0-3	3.0	2.5	1.5
LG112	Max:	10.1	Mild PO/St/Sh to 8 ft	5-10	4.2	2.3	
	Average:	8.5	Willa PO/St/Sil to 8 It	3-10	4.2		
	Max:	3.4	Moderate PO/St/Sh	0-5	3.4		
EGI13	Average:	3.0	Widderate PO/3t/3ii	0-5	3.4	8.0	١ ,
EG113 [Max:	5.3	Moderate PO/St/Sh to 8.3	5 40	F.0	8.0	2
	Average:	4.15	ft 5-10 5.0	ĺ			
	Max:	2.8	Moderate PO/St/Sh	0-5	3.5	1	1.5
EGI14	Average:	2			3.5	0.5	
EG114	Max:	4.5	1411100 - 5.5.6	5-10 3	3.6	9.6	
[Average:	4.15	Mild PO to 5.5 ft		3.6		
	Max:	670.8	St	2.5			
56145	Average:	335.9	Strong PO/St/Sh	0-5	3.4		2.5
EGI15	Max:	28.9	Same - DO /Sa /Sh += 7 4 6	5.40	2.5	3.0	
	Average:	19	Strong PO/St/Sh to 7.4 ft	5-10	3.5		
	Max:	451	Street = 00 /St /Sh	0.5	2.4		
50116	Average:	225.85	Strong PO/St/Sh	0-5	3.1		
EGI16	Max:	16	54 BO /54 /54 4- 7 5 ft	F 10	5.0	1.25	2
	Average:	14	Strong PO/St/Sh to 7.5 ft	5-10	5.0		ŀ
	Max:	14.1	11/0 11/0				
<u> </u>	Average:	8.6	N/O, N/S	0-5	3.2		1
	Max:	22.4	11/0 11/0		1	1	I
EGI17 -	Average:	13.3	N/O, N/S	5-10	3.5	12.5	2.5
<u> </u>	Max:	110.1				1	
-	Average:	59	Moderate PO to 11 ft	10-15	3.5		

 $^{^{\}mathbf{1}}$ No measurements were made from the lowest sample interval (10 to 15 feet).

 $^{^{2}}$ PO = petroleum odor; St = staining; Sh = sheen; N/O = no odor; N/S = no staining

³ Approximate water table depth is estimated based on soil moisture content observations and does not necessarily reflect actual water table. All depths are in feet below ground surface.

			Western Grid				
Daving Number			Observations ²	5 11 (6)		Soil Sample	Approx. ³ Water Table
Boring Number		ling (ppm)	Observations	Depth (ft)	Recovery (ft)	Depth (ft)	Depth (ft)
	Max: Average:	4.8 1.2	No to Slight PO	0-5	2.9		
F	Max:	112					
WGP23	Average:	42.4	Slight to Strong PO/St	5-10	3.5	NA	1.3
į.	Max:	1.3					
	Average:	0.9	PO	10-12	2.0		
	Max:	0	N/O N/S	0-5	2.0		
	Average:	0	N/O, N/S	0-5	2.8		
WGP24	Max:	0.1	N/O, N/S	5-10	2.8	NA	NM
	Average:	0.03	.,, 0, .,, 0			1	"""
_	Max:	0	N/O, N/S	10-12	2.0		
	Average:						<u> </u>
-	Max:	0	N/O, N/S	0-5	2.75		
-	Average: Max:	54.7			 		
WGP25	Average:	21.9	Slight PO	5-10	3.4	NA	NM
<u> </u>	Max:	4.6					
	Average:	3.1	PO	10-12	1.25		İ
	Max:	99	PO	0.5	3.6		
	Average:	50.2	PU	0-5	2.6	5.75	
WGP26	Max:	293	PO/St	5-10	2.9		NM
	Average:	133.5		3 10	2.5		""
1	Max:	10.2	Slight PO	10-12	1.8		
	Average:	6.1					
-	Max:	1.9 1.9	St	0-5	3.3	10.6	
⊢	Average: Max:	1.4	St to 5.75 ft; slight PO at				
WGQ21	Average:	1.25	7.6 ft	5-10	3.8		9
<u> </u>	Max:	3.5					
F	Average:	3.5	Slight PO to 11 ft	10-12	1.2		
	Max:	4.9	N/O, N/S	0-5	2.2		
	Average:	3.55	14/0, 14/3	0-5	3.2		ļ
WGQ22	Max:	343.9	Strong PO/St	5-10	3.3	7.5	2.5
	Average:	174.7			3.3	,.5	2.5
<u> </u>	Max:	21.5	Strong PO/St	10-12	1.2		
	Average:	21.5					
<u> </u>	Max:	37.5	N/O, N/S	0-5	3.25		
WGQ23	Average:	20.6 316.4				6.6	2
-	Max:		Strong PO to 6.8 ft	5-10	3.2		
	Average: Max:	273.1 518			 		
-	Average:	260.75	Moderate PO/Sh	0-5	3.25	·	
WGQ24	Max:	547			<u> </u>	6.0	1
	Average:	309.65	Moderate PO/Sh to 7.6 ft	5-10	3.2		
	Max:	548			<u> </u>		†
	Average:	276.35	Strong PO/St	0-5	2.5		i
WGO3E	Max:	603.8	Strong DO/St to 7.7 ft	F 10	4.5	۱	
WGQ25	Average:	600.9	Strong PO/St to 7.7 ft	5-10	4.2	8.5	1.5
	Max:	421.5	N/O, N/S	10-12	2.0		
	Average:	421.5	14/0,14/3	10-12	2.0		
	Max:	91.8	Slight PO/St	0-5	3.7		
	Average:	47.75	Jiight FO/3t	U-3	3./		
WGQ26	Max:	572	Strong PO/ST	5-10	4.3	6.3	7.5
	Average:	435.9		2.0	7.5	"	
<u>_</u>	Max:	13.4	N/O, N/S	10-12	2.0		
	Average:	13.4	.,,,,,,,,	10 12		L	<u> </u>

			Western Grid				
Boring Number	OVA Read	ling (ppm)	Observations ²	Depth (ft)	Recovery (ft)	Soil Sample Depth (ft)	Approx. ³ Water Table Depth (ft)
	Max:	3.2	N/O, N/S	0-5	3.4		
Ļ	Average:	3.15	14/0,14/3	0-3	3.4		
WGQ27	Max:	433.5	Strong PO/St/Sh	5-10	3.8	6.5	2.5
· -	Average:	228.25			-	0.5	
ŀ	Max:	8.9	Mild PO	10-12	1.5		
	Average: Max:	8.9 4.2					
F	Average:	3.45	Mild PO	0-5	3.3		
 	Max:	2.6	†				
WGQ28	Average:	2.55	Moderate PO/St/Sh	5-10	5.0	1.0	1.5
<u> </u>	Max:	2.4	14 1 1 00 (0. (0)				
	Average:	2.4	Moderate PO/St/Sh	10-12	1.0		
	Max:	3.0	N/O, N/S	0.5	2.75		
	Average:	2.6	N/O, N/S	0-5	2.75		
WGQ29	Max:	6.3	Slight St to 8.5 ft	5-10	4.5	6.0	3.5
WGQ29	Average:	4.5	Slight St to 8.5 ft	3-10	4.5	6.0	2.5
<u> </u>	Max:	1	Slight PO	12-Oct	0.6		
	Average:	1	Silght 10	12 001	0.0		
L	Max:	6.0	N/O, N/S	0-5	3.3	2.5	1.5
WGR21	Average:	5.4	14/0/11/5		3.3		
-	Max:	5.6	N/O, N/S	5-10	4.0	2.5	1.5
	Average:	5.6	, , , , , , , , , , , , , , , , , , , ,			ļ <u>.</u>	4
	Max:	4.5	St to 2.1 ft	0-5	3.3		
- -	Average: Max:	4.35 504.3			 		
WGR22	Average:	255.05	Strong PO/Some St 5-10 3.8 5.5	5.5	8		
F	Max:	183.4					
	Average:	183.4	Strong PO to 10.5 ft	10-12	1.2		
	Max:	9.18					
WGR23	Average:	7.54	St	0-5 3.1		_	
WGR23	Max:	547	Strong DO/St to 7 ft		4.0	1 6.5	5
	Average:	515.65	Strong PO/St to 7 ft	5-10	4.0		
	Max:	344.3	Moderate PO/St/Sh	0-5	2.6		
L	Average:	173.65	Widderate P 0/3t/3ii	0-3	2.0		
WGR24	Max:	628.3	Moderate to Strong PO/Sh	5-10	5.0	an	1
	Average:	451.9			3.0	9.0	_
	Max:	253.4	Strong PO	10-12	1.2		
	Average:	253.4			1	_	
	Max:	373.1	Moderate PO/Sh	0-5	2.5		
WGR25	Average: Max:	188.65 535.4				6.0	1.5
	Average:	527.35	Moderate PO/Sh to 6.2 ft	5-10	5.0	6.0 2.5 5.5 6.5 9.0	
	Max:	268.7			<u> </u>		· · · · · ·
 	Average:	135.7	Mild PO/St/Sh	0-5	2.9		
<u> </u>	Max:	683.3	 				
WGR26	Average:	489.3	Mild PO/St/Sh to 7.5 ft	5-10	4.2	9.0	1
	Max:	1					
 	Average:	1	N/O, N/S	10-12	1		
	Max:	426.8			 		
 	Average:	214	Mild PO	0-5	3.1		
<u> </u>	Max:	490.5			 		1
WGR27	Average:	283.3	Moderate to Strong PO/St	5-10	3.6	6.0	
-	Max:	82.7			 		
-	Average:	82.7	Strong PO/St to 10.6 ft	10-12	1.2		l

			Western Grid	•					
	. <u>.</u> :	•	7 7 7 7				Approx.3		
Boring Number	OVA Read	ding (ppm)	Observations ²	Depth (ft)	Recovery (ft)	Soil Sample Depth (ft)	Water Table Depth (ft)		
	Max:	1.3	N/O, N/S (septage odor	0-5	2.8				
<u> </u>	Average:	1.05	1.5 to 2.8 ft)	0-5	2.0				
WGR28	Max:	8.8	Strong PO/St/Sh	5-10	4.6	6.0	1.5		
	Average:	7.0	30 ong 1 0/30/30	3-10	4.0	0.0	1.5		
1	Max:	2.6	[no description]	10-12	0.7				
	Average:	2.6	(no description)	10 12	0.7				
<u> </u>	Max:	4.7	N/O, N/S	0-5	3.25				
WGR29	Average:	3.7	.,-,.,-			2.5	1		
1	Max:	2.4	N/O, N/S	5-10	2.75		1 -		
	Average:	2.4							
 	Max:	4.2	· N/O, N/S	0-5	3.3	l			
<u> </u>	Average:	2.1	.,,,,,,						
WGS21	Max:	0.0	N/O, N/S	5-10	4.1	1.0	1		
<u> </u>	Average:	0.0					_		
	Max:	0.0	N/O, N/S	10-12	0.8				
	Average:	0.0	, , , , ,						
ļ.	Max:	6.7	N/O, N/S	0-5	2.3				
-	Average:	6.0				8.5			
WGS22	Max:	9.5	N/O, N/S	5-10	3.9		8		
	Average:	8.0							
	Max:	7.0 7.0	N/O, N/S	10-12	0.8				
	Average:					 	.		
F	Max:	7.4	N/O, N/S	0-5	3.1	10.5	į		
-	Average:	6.95					10		
WGS23	Max:	497.5 254.3	N/O, N/S	5-10	3.1				
}	Average:						1		
F	Max: Average:	580 580	Strong PO/Sh	10-12	1.0				
	Max:	25.4							· · · · · · · · · · · · · · · · · · ·
}	Average:	18.3	Mild PO/St	0-5	2.0		1		
WGS24	Max:	407.9	Mild to Strong PO/St to			6.5	0.5		
}	Average:	267.9	7.1 ft	5-10	3.5				
	Max:	342.2	7.110				 		
H	Average:	180.15	Slight to Moderate PO/St	0-5	3.2		ł		
-	Max:	581.2							
WGS25	Average:	545.75	 Moderate PO/St 	5-10	1.7	8.5	NN		
	Max:	222.8							
ł	Average:	222.8	Moderate PO/St	10-12	1.9				
	Max:	259.2					 		
ŀ			Mild PO/St	0-5	3.5				
ŀ	Average: Max:	133.45 344.5			 				
WGS26		207.85	Strong PO/St/Sh	5-10	4.0	6.0	5		
}	Average: Max:								
}		86.8	Strong PO/St/Sh	10-12	2.0				
	Average:	86.8			-		ļ		
-	Max:	164	Mild PO	0-5	3.1				
	Average:	91.8			ļ				
WGS27	Max:	356.8	Strong PO/Sh	5-10	3.5	6.0	1.5		
	Average:	198.85							
<u>}</u>	Max:	14.3	Strong PO/Sh	10-12	1.0				
	Average:	14.3			ļ				
	Max:	120.6	Mild PO/St/Sh	0-5	3.3				
WGS28	Average:	65.15				7.0	1		
	Max:	235.4	Mild PO/St/Sh to 7.2 ft	5-10	4.3				
	Average:	157.35	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		L		1		

			Western Grid			A	
							Approx.3
						Soil Sample	Water Table
Boring Number		ling (ppm)	Observations ²	Depth (ft)	Recovery (ft)	Depth (ft)	Depth (ft)
WGS29	Max: Average:	169.8 90.75	Mild PO	0-5	3.4		
	Max:	12.7					
	Average:	11.65	Mild PO	5-10	4.5	2.3	1
	Max:	10.4	A #11 60	10.10			
	Average:	10.4	Mild PO	10-12	1.0		
	Max: ,	3.5	N/O, N/S	0-5	3.2		
	Average:	3.45	.,,,,,,		J		
WGT21	Max:	3.2 2.65	N/O, N/S	5-10	2.9	10.5	2
	Average: Max:	3.8			 		
	Average:	3.8	N/O, N/S	10-12	0.7		
	Max:	6.0	N/O N/O				
i	Average:	4.5	N/O, N/S	0-5	3.1		
WGT22	Max:	179.9	Strong PO starting at 6.7 ft	5-10	3.0	75	6.5
	Average:	92.4	Strong to starting at 0.7 ft	3 10	3.0	7.5	د.ه
	Max:	7.8 7.8	Mild PO	10-12	0.9		
	Average: Max:	3.6				7.5	
	Average:	3.15	N/O, N/S	0-5	2.9		
WCTOO	Max:	328.8	C. D.O. (C)			l	
WGT23	Average:	166.9	Strong PO/Sh	5-10	3.75	7.5	2.5
	Max:	1	N/O N/S	10.13	0.0	i	
	Average:	1	N/O, N/S	10-12	0.8		
	Max:	4.5	N/O, N/S	0-5	2.7		
	Average:	3.65	14/0,14/3	0-3	2./		[
WGT24	Max:	605.1	Strong PO starting at 5.8 ft	5-10	2.9	7.5	1.5
	Average: Max:	493.25 12.9		·			
	Average:	12.9	[no description]	10-12	3		
	Max:	189.7					
MCTOF	Average:	97.55	Mild PO	0-5	3.3		
WGT25	Max:	521.8	Mild PO to 7 ft	F 10	3.6	6.5	0.5
	Average:	346.65	Mild PO to 7 It	5-10	3.6		
	Max:	528	Strong PO/St/Sh	0-5	4.2		
	Average:	269.35					
WGT26	Max:	682 378.9	Strong PO/St/Sh	5-10	3.75	6.5	0.5
	Average: Max:	29.8					
	Average:	29.8	Strong PO/St/Sh	10-12	0.8	7.5 7.5 7.5	
	Max:	295.8	1 21 1 2 2 (2) (2)				
	Average:	149.25	Mild PO/St/Sh	0-5	3.5		
WGT27	Max:	682.5	Mild PO/St/Sh to 8 ft	5-10	5.0	6 5	,
VVG127	Average:	351.05	14110 1 0/3(/311 t0 0 1t	2-10	σ.υ	0.5	1
	Max:	12.8	N/O, N/S	10-12	0.8		
<u> </u>	Average:	12.8				ļ	ļ
	Max:	2.2	N/O, N/S	0-5	4.0		
	Average: Max:	2.05 49.5				1	
WGT28	Average:	27.8	Moderate PO	5-10	3.8	6.0	1
	Max:	3.6			l		
	Average:	3.6	Moderate PO	10-12	1.0		
	Max:	1.9	Mild PO	0-5	3.1		
	Average:	1.75	IVIIIU PO	U-5	3.1		
WGT29	Max:	15.7	Strong PO/Sh	5-10	3.3	6.0	1
- :3	Average:	9.7] "	
	Max:	2.9	[no description]	10-12	3		
	Average:	2.9	L		I	7.5	I

TABLE 3 SUMMARY OF OVA READINGS AND OBSERVATIONS - WESTERN GRID Area 29 Remediation Enhancement Investigation FAA William J. Hughes Technical Center

			Western Grid		•		
						Soil Sample	Approx. ³ Water Table
Boring Number		ling (ppm)	Observations ²	Depth (ft)	Recovery (ft)	Depth (ft)	Depth (ft)
Į.	Max:	4.2	N/O, N/S	0-5	3.75		
WGU21	Average:	3.65	.,,,,,,			3.0	2.5
-	Max:	3.4	N/O, N/S	5-10	3.0	0.0	
	Average:	3.05	<u> </u>				
	Max:	3.2	N/O, N/S	0-5	2.75		
<u>-</u>	Average:	2.95					
WGU22	Max:	3.2 3.05	N/O, N/S	5~10	4.0	10.5	NN
F	Average: Max:	4.4			 		
F	Average:	4.4	− N/O, N/S	10-12	0.75		1
	Max:	3.2			 		
F	Average:	3.1	− N/O, N/S	0-5	2.75		
F	Max:	33.2			 		
WGU23	Average:	17.95	Mild PO to 7.3 ft	5-10	3.1	6.6	0.5
<u> </u>	Max:	22					l
<u> </u>	Average:	22	Mild PO to 10.75 ft	10-12	0.9		1
	Max:	4.4	. 11/0 11/0	0.5	1		
	Average:	3.75	N/O, N/S	0-5	3.25		
WGU24	Max:	6.5	Mild to Street BO/Sh	F 40	3.75	40.5	
WG024	Average:	5.7	Mild to Strong PO/Sh	5-10	2.75	10.5	1.5
	Max:	7.9	Strong PO/Sh	10-12	0.8		
	Average:	7.9	300 lg 1 0/311	10-12	0.8		
	Max:	3.3	N/O, N/S	0-5	2.9		
<u>_</u>	Average:	2.9	11,0,11,0		2.3		
WGU25	Max:	2.5	Slight PO/St	5-10	4.4	10.5	1.5
· -	Average:	2.45			ļ		
i -	Max:	4.7 4.7	Slight PO	10-12	0.7		
	Average:	4.7	<u> </u>		<u> </u>		
-	Max:	3.4	N/O, N/S	0-5	3.25		1
-	Average: Max:	23.7					1
WGU26	Average:	14.35	Strong PO/Sh	5-10	3.9	7.0	5.5
F-	Max:	8.0					
-	Average:	8.0	Strong PO/Sh	10-12	1.5		
	Max:	110.7			 		
<u> </u>	Average:	57.2	Moderate PO/St/Sh	0-5	3.0		
	Max:	560			<u> </u>	l	
WGU27	Average:	286.85	Moderate to Strong PO/Sh	5-10	5.0	7.6	0.5
F	Max:	7.3			1 .		
	Average:	7.3	Strong PO/Sh to 10.3 ft	10-12	0.8		
	Max:	66.5					
F	Average:	36.9	Moderate PO/St	0-5	2.8		
WCU20	Max:	11.7	NA-4 20./5:	F 45			
WGU28	Average:	9.8	Moderate PO/St	5-10	5.0	2.0	0.25
	Max:	5.8	Madayst- DO/Ct	10.12	4.2	1	
F	Average:	5.8	Moderate PO/St	10-12	1.3		
	Max:	181.7	A 40 Labor Co				
WC1130	Average:	93.45	Mild to Strong PO/St/Sh	0-5	3.2		
WGU29	Max:	10.8	Charles - 0.0 /C: /C!	F		3.0	0.25
	Average:	8.95	Strong PO/St/Sh to 7.8 ft	5-10	3.1	l	

¹ No measurements were made from the lowest sample interval (10 to 12 feet).

 $^{^{2}}$ PO = petroleum odor; St = staining; Sh = sheen; N/O = no odor; N/S = no staining

³ Recovery not noted.

NA = Not applicable (no sample collected for analysis)

NM = Not measured (no sample collected for observation)

NN = Not noted (moisture content of soil not noted)

³ Approximate water table depth is estimated based on soil moisture content observations and does not necessarily reflect actual water table. All depths are in feet below ground surface.

TABLE 4 GEOPROBE GROUNDWATER SAMPLING INFORMATION

Area 29 Remediation Enhancement Investigation FAA William J. Hughes Technical Center

				WATER	QUALITY INDICAT	TOR PARAMETER	S AT TIME OF S	AMPLING
SAMPLÉ ID	SAMPLE DATE	SAMPLE DEPTH (FEET BGS) ¹	OBSERVATIONS	pH (Standard Units)	TEMPERATURE (° CELSIUS)	SPECIFIC CONDUCTIVITY (mS/cm) ²	OXIDATION- REDUCTION POTENTIAL (millivolts)	DISSOLVED OXYGEN (mg/L) ³
29-EG-G13GW (4.5-8.5)	04/01/14	4.5-8.5		6.50	7.83	0.413	-115	5.73
29-EG-G15GW(4-8)	04/01/14	4-8	Strong PO⁴	6.90	8.59	0.402	-37	3.67
29-EG-G15GW (14-18)	04/01/14	4-8	Strong PO		Duplicate o	f sample 29-EG-G	15GW(4-8)	
29-EG-G17GW (7-11)	04/01/14	7-11	Strong PO	6.77	8.51	0.968	-136	3.94
29-EG-H17GW (5-9)	04/01/14	5-9	Strong PO	6.77	7.93	0.944	-121	0.93
29-EG-I15GW (5-9)	04/01/14	5-9	Strong PO/Sheen	6.42	7.93	0.530	-59.0	1.67
29-WG-Q23GW (5.5-9.5)	04/01/14	5.5-9.5	Strong PO	5.91	9.60	0.147	-25	0.71
29-WG-Q24GW (4.5-8.5)	04/01/14	4.5-8.5	Strong PO	6.01	9.68	0.272	-18	3.13
29-WG-Q25GW (5-9)	04/01/14	5-9	Strong PO	6.11	9.91	0.286	-39	1.18
29-WG-Q26GW (5-9)	04/01/14	5-9	Strong PO	6.15	8.72	0.308	-71	0.65
29-WG-R23GW (5.5-9.5)	04/01/14	5.5-9.5	Strong PO	5.77	10.33	0.171	-7	1.02
29-WG-R24GW (8.5-12.5)	04/01/14	8.5-12.5	Strong PO/Sheen	5.75	7.93	0.156	17	4.58
29-WG-R26GW (6.5-10.5)	04/01/14	6.5-10.5	Strong PO/Sheen	6.13	9.16	0.437	-29	5.50
29-WG-S24GW (4.5-8.5)	04/01/14	4.5-8.5	Strong PO	6.51	12.40	0.365	-77	1.94
29-WG-S26GW (5-9)	04/01/14	5-9	Strong PO	6.20	10.24	0.463	-60	2.82

Notes: 1) Feet BGS = Feet below ground surface 2) mS/cm = millisiemens per centimeter

3) mg/L = milligrams per Liter 4) PO = Petroleum odor

TABLE 5 SUMMARY OF PRE-TREATMENT AND POST-TREATMENT SOIL SAMPLE RESULTS Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

	C	omparison Crit	eria		Pre-Treatment Result	ts		Post-Treat	ment Results	
Sample ID		NJ Non-	NJ Impact to	29-GP-BT4	29-GP-BT6	29-GP-BT7	29-GPBT4(5-6')	29-GPBT6(6-8')	29-GPBT7(5-7')	29-GPBT7(15-17')
Sampling Date	NJ Residential	Residential	Groundwater	4/7/2010	4/7/2010	4/7/2010	02/14/14	2/14/2014	2/14/2014	2/14/2014
Matrix	Soil Standard	Soil Standard	Screening Level (Nov 2013)	Soil	Soil	Soil	Soil	Soil	Soil	Duplicate of 29- GPBT7 (5-7')
Dilution Factor				1000/5 (GRO/DRO)	1000/25 (GRO/DRO)	50/20 (GRO/DRO)	1	100	1	1
VOA-8260C-SOIL				Not Analyzed	Not Analyzed	Not Analyzed	Result Q	Result Q	Result Q	Result
2-Butanone	3,100	44,000	0.9				0.0022 J	0.88 U	0.0042 U	0.0045 L
Acetone	70,000	NA	19				0.015 B	0.88 U	0.01 B	0.013
Benzene	2	5	0.005				0.0027	0.36	0.00084 U	0.00089
Carbon disulfide	7,800	110,000	6				0.00049 J	0.18 U	0.00084 U	0.00089
Cyclohexane	NA	NA	NA				0.073	31	0.00084 U	0.00089
Ethylbenzene	7,800	110,000	13				0.045	13	0.00084 U	0.00089
Isopropylbenzene	NA	NA	NA				0.0059	3.9	0.00084 U	0.00089
Methylcyclohexane	NA	NA	NA				0.18	72	0.00026 J	0.00089
Toluene	6,300	91,000	7				0.00062 J	0.18 U	0.00084 U	0.00089
Xylenes, Total	12,000	170,000	19				0.0013 J	58	0.0017 U	0.0018
Total VOC Concentration	NA	NA	NA				0.32621	178.26	0.01111	0.01339
GRO/DRO (SEE NOTE FOR METHODS)				Result Q	Result Q	Result Q				
GRO GRO				260	740	24	2.4	800	2.3 U	2.4
DRO (C10-C44)				460	2.300	1,600	0.028	1.4	0.054	0.095

2010 soil samples were analyzed for GRO/DRO using SW846 methods 5035/5030; 2014 soil samples were analyzed for GRO/DRO using SW846 method 8015D Only detected analytes are listed.

All results and comparison criteria in milligrams per kilogram (mg/kg) or parts per million (ppm).

Highlighted concentrations shown in bold type face exceed limits.

The 10,000 parts per million soil cleanup standard established in the Record of Decision was not exceeded in any of the samples.

- B: The analyte was found in an associated blank, as well as in the sample.
- J : Indicates an estimated value.
- U : Analyzed for but not detected.
- U *: LCS or LCSD exceeds the control limits.

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

Sample ID	NJ Residential	NJ Non-Residential	NJ Impact to	29-EGF11(0.16')		29-EGF12(1.5')		29-EGF13(6.5')		29-EGF14(8')		29-EGF15(1.5')		29-EGF16(6')
Sample Depth ¹	Soil Remediation	Soil Remediation	GW Soil					,				20 201 10(110)		20 201 10(0)
Sampling Date	Standard	Standard	Screening	2/11/2014		2/11/2014	_	2/11/2014		2/11/2014		2/11/2014	_	2/11/2014
Matrix			Level Nov 2013	Soil		Soil		Soil		Soil		Soil		Soil
Dilution Factor				1		200		250		500	-	50		50
VOA-8260C-SOIL				Result	Q	Result	Q	Result	Q	Result	Q	Result	O	Result Q
SOIL BY 8260C														7100011 %
1,1,1-Trichloroethane	290	4,200	0.3	0.00086	U	0.34	U	0.44	U	0.97	U	0.084	U	0.085 U
1,1,2,2-Tetrachloroethane	1	3	0.007	0.00086	U	0.34	U	0.44	U	0.97	U	0.084	U	0.085 U
2-Butanone	3,100	44,000	0.9	0.0013	J	1.7	U	2.2	U	4.9	U	0.42	U	0.43 U
Acetone	70,000	NA	19	0.013	В	1.7	U	2.2	U	4.9	U	0.42	U	0.43 U
Benzene	2	5	0.005	0.00086	U	0.34	U	0.44	U	0.22	J	0.084	U	0.26
Carbon disulfide	7,800	110,000	6	0.00086	U	0.34	U	0.44	U	0.97	U	0.084	U	0.085 U*
Cyclohexane	NA	NA	NA	0.00058	J	0.34	U	54		84		0.084	U	12
Ethylbenzene	7,800	110,000	13	0.00086	U	3.3		7.6		1.6		0.012	J	5.1
Isopropylbenzene	NA	NA	NA	0.00086	U	2.4		4.6		18		0.018	J	1.6
Methyl acetate	78,000	NA	22	0.0033	J	1.7	U	2.2	U	4.9	U	0.42	U	0.43 U
Methylcyclohexane	NA	NA	NA	0.0017		88		180		330		0.24		41
Toluene	6,300	91,000	7	0.00086	U	0.34	U	0.44	U	0.97	U	0.084	U	0.085 U
Xylenes, Total	12,000	170,000	19	0.0017	U	0.46	J	0.89	U	1.9	U	0.031	J	0.17 U
Total VOC Concentration	NA	NA	NA	0		94.16		246.2		433.82		0.301		59.96
Total BTEX Concentration	NA	NA	NA	ND		3.76	-	7.6		1.82		0.043		5.36

All concentrations in milligrams per kilogram (mg/kg or ppm).

Highlighted concentrations shown in bold type face exceed limits.

B: The analyte was found in an associated blank, as well as in the sample.

J : Indicates an estimated value.

U : Analyzed for but not detected.

U *: LCS or LCSD exceeds the control limits

NA : Not applicable ND : Not detected

¹ Sample depths are noted only in those cases where the actual sample depth differs from the depth indicated in the sample ID..

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

Sample ID	NJ Residential	NJ Non-Residential	NJ Impact to	29-EGF17(6')	29	-EGG11(1.5')		29-EGG12(6')	29-EGG13(6.5')		29-EGG14(6')	T	29-EGG15(6')
Sample Depth ¹	Soil Remediation	Soil Remediation	GW Soil										
Sampling Date	Standard	Standard	Screening	2/11/2014		2/11/2014		2/11/2014	2/11/2014		2/11/2014	\top	2/11/2014
Matrix			Level Nov 2013	Soil		Soil		Soil	Soil		Soil	\top	Soil
Dilution Factor				100		1		50	500		500		500
VOA-8260C-SOIL				Result	Q	Result	Q	Result Q	Result	Q	Result	a	Result Q
SOIL BY 8260C												\top	
1,1,1-Trichloroethane	290	4,200	0.3	0.18	U	0.0011	U	0.095 U	1.1	U	0.9	U	0.86 U
1,1,2,2-Tetrachloroethane	1	3	0.007	0.18	U	0.0011	U	0.095 U	1.1	U	0.9	U	0.86 U
2-Butanone	3,100	44,000	0.9	0.9	U	0.0053	U	0.48 U	5.4	U	4.5	U	4.3 U
Acetone	70,000	NA	19	0.9	U	0.014	В	0.48 U	5.4	U *	4.5 U	*	4.3 U*
Benzene	2	5	0.005	0.38		0.0011	U	0.095 U	1.1	U	0.9	U	0.86 U
Carbon disulfide	7,800	110,000	6	0.18 U	*	0.0011	U	0.095 U*	1.1	U	0.9	U	0.86 U
Cyclohexane	NA	NA	NA	11		0.0007	J	3.3	53		47		54
Ethylbenzene	7,800	110,000	13	10		0.00027	J	2.3	18		0.74	J	14
Isopropylbenzene	NA	NA	NA	5		0.0011	U	0.99	13		6.1		10
Methyl acetate	78,000	NA	22	0.9	U	0.0053	U	0.48 U	5.4	U	4.5	U	4.3 U
Methylcyclohexane	NA	NA	NA	61		0.0029		15	240		170		210
Toluene	6,300	91,000	7	0.18	U	0.00017	J	0.095 U	1.1	U	0.9	U	0.86 U
Xylenes, Total	12,000	170,000	19	0.36	U	0.0021	U	1.8	2	J	1.8	U	9.8
Total VOC Concentration	NA	NA	NA	87.38		0.00404		23.39	326		223.84		297.8
Total BTEX Concentration	NA	NA	NA	10.38		0.00044		4.1	20		0.74		23.8

All concentrations in milligrams per kilogram (mg/kg or ppm).

Highlighted concentrations shown in bold type face exceed limits.

B: The analyte was found in an associated blank, as well as in the sample.

- J: Indicates an estimated value.
- U : Analyzed for but not detected.
- U *: LCS or LCSD exceeds the control limits

NA: Not applicable

ND : Not detected

¹ Sample depths are noted only in those cases where the actual sample depth differs from the depth indicated in the sample ID..

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

Sample ID	NJ Residential	NJ Non-Residential	NJ Impact to	29-EGG16(3')		29-EGG17(9')	T	29-EGH11(8')		29-EGH12(2.5')		29-EGH13(3')		29-EGH14(6')	_
Sample Depth ¹	Soil Remediation	Soil Remediation	GW Soil				1	_/					\neg	20 201111(0)	_
Sampling Date	Standard	Standard	Screening	2/11/2014		2/11/2014	+	2/11/2014	\dashv	2/11/2014		2/11/2014	\neg	2/11/2014	_
Matrix			Level Nov 2013	Soil		Soil	+	Soil		Soil		Soil		Soil	_
Dilution Factor				50		200	+	1		50	\neg	50		50	_
VOA-8260C-SOIL				Result	Q	Result C	2	Result	O	Result	0	Result	0	Result	-
SOIL BY 8260C							+			Tiodax	~	Hoodit		Hoodit	
1,1,1-Trichloroethane	290	4,200	0.3	0.08	U	0.39 L	J	0.00088	U	0.054	J	0.087	U	0.12	U
1,1,2,2-Tetrachloroethane	1	3	0.007	0.08	U	0.39 L	J	0.00088	U	0.96	-	0.087	U	0.12	-ŭ
2-Butanone	3,100	44,000	0.9	0.4	U	1.9 L		0.0029	J	0.47	U	0.43	U	0.58	U
Acetone	70,000	NA	19	0.4	U	1.9 U	*	0.046	В	0.47	Ū	0.43	Ü	0.58	U
Benzene	2	5	0.005	0.092		0.7		0.00088	U	0.094	U	0.087	U	0.12	U
Carbon disulfide	7,800	110,000	6	0.08	U*	0.39 U	ı	0.00043	J	0.094	U	0.087	Ü	0.12	U
Cyclohexane	NA	NA	NA	2.3		27		0.00026	J	4.5		4.8		5.6	
Ethylbenzene	7,800	110,000	13	0.44		15	+	0.00088	U	1.5	_	0.087	U	0.12	U
Isopropylbenzene	NA	NA	NA	0.25		7.6		0.00088	U	2.7	\neg	0.48		1.3	_
Methyl acetate	78,000	NA	22	0.4	U	1.9 U	j	0.0044	U	0.47	U	0.43	U	0.58	11
Methylcyclohexane	NA	NA	NA	7.1		140	T	0.00031	J	34		15		22	
Toluene	6,300	91,000	7	0.08	U	0.39 U	J	0.00088	U	0.094	U	0.087	U	0.12	U
Xylenes, Total	12,000	170,000	19	0.049	J	0.51	J	0.0018	U	5.7		0.17	Ū	0.23	U
Total VOC Concentration	NA	NA	NA	10.231		190.81		0.0039		49.414	7	20.28		28.9	_
Total BTEX Concentration	NA	NA	NA	0.581		16.21	1	ND	7	7.2	1	ND	\neg	ND	_

All concentrations in milligrams per kilogram (mg/kg or ppm).

Highlighted concentrations shown in bold type face exceed limits.

B : The analyte was found in an associated blank, as well as in the sample.

J: Indicates an estimated value.

U : Analyzed for but not detected.

U *: LCS or LCSD exceeds the control limits

NA: Not applicable

ND : Not detected

¹ Sample depths are noted only in those cases where the actual sample depth differs from the depth indicated in the sample ID..

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

Sample ID	NJ Residential	NJ Non-Residential	NJ Impact to	29-EGH15(2')		29-EGH16(6')	1 2	29-EGH17(4.5')	T	29-EGI11(6')	T	29-EGI12(2.5')		29-EGI13(13')	
Sample Depth ¹	Soil Remediation	Soil Remediation	GW Soil											8.0 ft	
Sampling Date	Standard	Standard	Screening	2/11/2014		2/11/2014		2/11/2014	\neg	2/11/2014		2/11/2014		2/11/2014	
Matrix			Level Nov 2013	Soil		Soil		Soil		Soil		Soil		Soil	
Dilution Factor				100		500		100	\neg	50		1		1	
VOA-8260C-SOIL				Result	Q	Result Q		Result	Q	Result	Q	Result	Q	Result	Q
SOIL BY 8260C															
1,1,1-Trichloroethane	290	4,200	0.3	0.21	U	1 U		0.18	U	0.085	U	0.00082	U	0.00091	U
1,1,2,2-Tetrachloroethane	1	3	0.007	0.21	U	1 U		0.18	U	0.085	U	0.00082	U	0.00091	U
2-Butanone	3,100	44,000	0.9	1	U	5.2 U		0.88	U	0.42	U	0.0034	J	0.0031	J
Acetone	70,000	NA	19	1	U	5.2 U		0.88	U	0.42	U	0.038	В	0.041	В
Benzene	2	5	0.005	0.21	U	0.5 J		0.81		0.085	U	0.00035	J	0.0039	
Carbon disulfide	7,800	110,000	6	0.21	U*	1 U*		0.18	J *	0.085	U	0.00021	J	0.00073	J
Cyclohexane	NA	NA	NA	23		73		16		0.089		0.0044		0.05	
Ethylbenzene	7,800	110,000	13	0.55		5.3		0.15	J	0.038	J	0.00082	U	0.0008	J
Isopropylbenzene	NA	NA	NA	0.66		18		3.1	1	0.12		0.0026		0.013	
Methyl acetate	78,000	NA	22	1	U	5.2 U		0.88	U	0.42	U	0.0041	U	0.0046	U
Methylcyclohexane	NA	NA	NA	52		300		49		0.17		0.0053		0.11	
Toluene	6,300	91,000	7	0.21	U	1 U		0.18	U	0.085	U	0.00082	U	0.00042	J
Xylenes, Total	12,000	170,000	19	0.24	J	2.1 U		0.077	J	0.17	U	0.0016	U	0.0018	U
Total VOC Concentration	NA	NA	NA	76.45	\neg	396.8		69.137		0.417		0.01626		0.18195	
Total BTEX Concentration	NA	NA	NA	0.79		5.8		1.037	\neg	0.038	\neg	0.00035		0.00512	

All concentrations in milligrams per kilogram (mg/kg or ppm).

Highlighted concentrations shown in bold type face exceed limits.

B: The analyte was found in an associated blank, as well as in the sample.

J : Indicates an estimated value.

U : Analyzed for but not detected.
U *: LCS or LCSD exceeds the control limits

NA: Not applicable

ND : Not detected

¹ Sample depths are noted only in those cases where the actual sample depth differs from the depth indicated in the sample ID..

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

Sample ID	NJ Residential	NJ Non-Residential	NJ Impact to	29-EGI14(9.6')	29-EGI14(19.6')	T	29-EGI15(3')		29-EGI16	T	29-EGI17(17.5')	
Sample Depth ¹	Soil Remediation	Soil Remediation	GW Soil				3 /	\neg	1.25 ft		12.5 ft	
Sampling Date	Standard	Standard	Screening	2/11/2014	2/11/2014	_	2/11/2014	+	2/11/2014	\neg	2/11/2014	
Matrix			Level Nov 2013	Soil	Duplicate of 29-EGI14(9.6	6')	Soil	_	Soil	\neg	Soil	_
Dilution Factor				1	1	1	200		1	\neg	50	_
VOA-8260C-SOIL				Result (Result	Q	Result	Q	Result	a	Result	C
SOIL BY 8260C												
1,1,1-Trichloroethane	290	4,200	0.3	0.001	0.00088	U	0.24	J	0.00084	U	0.062	U
1,1,2,2-Tetrachloroethane	1	3	0.007	0.001	0.00088	U	1.5		0.00084	U	0.062	U
2-Butanone	3,100	44,000	0.9	0.005	0.0044	U	2.3	U	0.0038	J	0.31	U
Acetone	70,000	NA	19	0.018	0.02		2.3	U	0.042		0.31	U
Benzene	2	5	0.005	0.001	0.0009		0.23	J	0.00047	J	0.031	J
Carbon disulfide	7,800	110,000	6	0.00015	0.00022	J	0.46	U	0.00084	U	0.062	U
Cyclohexane	NA	NA	NA	0.061	0.047		22		0.0036		0.13	
Ethylbenzene	7,800	110,000	13	0.001	0.00088	U	14	\top	0.0076		0.062	U
Isopropylbenzene	NA	NA	NA	0.017	0.011		10		0.0033		0.091	
Methyl acetate	78,000	NA	22	0.005	0.0044	U	2.3	U	0.0042	U	0.31	U
Methylcyclohexane	NA	NA	NA	0.058	0.046		130		0.0036		0.6	
Toluene	6,300	91,000	7	0.00032	0.00088	U	0.46	U	0.00084	U	0.062	U
Xylenes, Total	12,000	170,000	19	0.002	0.0018	U	26		0.00074	J	0.12	U
Total VOC Concentration	NA	NA	NA	0.13747	0.12512		203.97		0.06511		0.852	
Total BTEX Concentration	NA	NA	NA	0.00132	0.0009		40.23		0.00881		0.031	

All concentrations in milligrams per kilogram (mg/kg or ppm).

Highlighted concentrations shown in bold type face exceed limits.

B: The analyte was found in an associated blank, as well as in the sample.

J: Indicates an estimated value.

U : Analyzed for but not detected.
U *: LCS or LCSD exceeds the control limits

NA: Not applicable

ND : Not detected

¹ Sample depths are noted only in those cases where the actual sample depth differs from the depth indicated in the sample ID..

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

Sample ID	NJ Residential	NJ Non Residential	NJ Impact to	29-WG-P26 (5.75)		29-WGQ21(10.6')	_	29-WGQ22(12.5')		29-WGQ23(6.6')		29-WGQ24(6')		29-WGQ25(8.5')	_
Sample Depth ¹	Soil Remediation	Soil Remediation	GW Soil					7.5 ft		LO WOOLO(0.0)	_	25 11 (10)	\dashv	23-114423(0.5)	
Sampling Date	Standard	Standard	Screening	4/1/2014		2/12/2014		2/12/2014	_	2/12/2014		2/12/2014	\dashv	2/12/2014	\neg
Matrix			Level Nov 2013	Soil		Soil	_	Soil		Soil		Soil	_	Soil	\neg
Dilution Factor				1		1		100		500		250	\dashv	500	
VOA-8260C-SOIL				Result	Q	Result	Q	Result	O	Result	0	Result	0	Result	0
2-Butanone	3,100	44,000	0.9	0.82	U	0.0045	U	0.94	U	5.7	IJ	2.5	iii	5.1	-11
Acetone	70,000	NA	19	0.82	U	0.024	В	0.94	U	5.7	U	2.5	Ü	5.1	- II
Benzene	2	5	0.005	0.16	U	0.00023	J	0.034	J	1.1	U	0.5	U	1	\dashv
Carbon disulfide	7,800	110,000	6	0.16	U	0.0009	U	0.19	U	1.1	u	0.5	u	1	ш
Cyclohexane	NA	NA	NA	5.7		0.0014	-	5.1	_	32	Ť	37	-	120	\dashv
Ethylbenzene	7,800	110,000	13	0.72		0.008		10		54		17		61	\dashv
Isopropylbenzene	NA	NA	NA	0.97		0.0034		5.3		23		9.4		19	\neg
Methylcyclohexane	NA	NA	NA	23		0.0048		36	_	190		150	\rightarrow	310	_
Toluene	6,300	91,000	7	0.16	U	0.00014	J	0.19	U	1.1	U	0.5	U	1	11
Xylenes, Total	12,000	170,000	19	1.44		0.012		48		260	Ŭ	100		260	
Total VOC Concentration	NA	NA	NA	31.83		0.02997		104.434		559		313.4		771	
Concentration	NA	NA	NA	2.16		0.02037		58.034		314		117		322	

All concentrations in micrograms per kilogram (ug/kg or ppb). Highlighted concentrations shown in bold type face exceed limits

- *: RPD of the LCS and LCSD exceeds the control limits
- B: The analyte was found in an associated blank, as well as in the sample.
- J: Indicates an estimated value.
- U : Analyzed for but not detected.
- NA: Not applicable
- ND : Not detected
- ¹ Sample depths are noted only in those cases where the actual sample depth differs from the depth indicated in the sample ID..

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

Sample ID	NJ Residential	NJ Non Residential	NJ Impact to	29-WGQ25(18.5')	29-WGQ26(6.3')	Т	29-WGQ27(6.5')	Т	29-WGQ28(1.0')	T	29-WGQ29(6.0')	T	29-WGR21(2.5')	_
Sample Depth ¹	Soil Remediation	Soil Remediation	GW Soil				1	_			LO W G GLO (CIO)	_	LO WATE (L.O)	-
Sampling Date	Standard	Standard	Screening	2/12/2014	2/12/2014	T	2/12/2014	\forall	2/12/2014		2/12/2014	\neg	2/12/2014	_
Matrix			Level Nov 2013	Duplicate of 29-WGQ25(8.5')	Soil	T	Soil	\dashv	Soil	\neg	Soil	\dashv	Soil	-
Dilution Factor				500	500	+	100	1	1	7	1	\dashv	1	-
VOA-8260C-SOIL				Result Q	Result C	2	Result	a	Result	o	Result	O	Result	0
2-Butanone	3,100	44,000	0.9	5.3 U	4.7 L	J	0.84	U	0.0048	Ū	0.0018	J	0.0045	ī
Acetone	70,000	NA	19	5.3 U	4.7	J	0.84	U	0.0073	В	0.019	В	0.0045	ī
Benzene	2	5	0.005	1.1	0.28	J	0.17	U	0.00096	U	0.001	U	0.0009	ī
Carbon disulfide	7,800	110,000	6	1.1 U	0.93 L	J	0.17	U	0.00096	U	0.00025	J	0.0009	ī
Cyclohexane	NA	NA	NA	150	62		1.7	1	0.00096	U	0.0015		0.0009	ī
Ethylbenzene	7,800	110,000	13	59	32		0.95	\neg	0.00096	U	0.00046	J	0.0009	ī
Isopropylbenzene	NA	NA	NA	17	11		2.2		0.00096	U	0.00046	J	0.0009	ī
Methylcyclohexane	NA	NA	NA	310	170		15	7	0.00032	J	0.0045		0.00023	J
Toluene	6,300	91,000	7	0.35 J	0.33	J	0.17	U	0.00096	U	0.001	U	0.00017	J
Xylenes, Total	12,000	170,000	19	240	130	\top	4.8		0.0019	U	0.0014	J	0.0018	Ū
Total VOC Concentration	NA	NA	NA	777.45	405.61	T	24.65		0.00032		0.01037		0.0004	
Concentration	NA	NA	NA	300.45	162.61		5.75		ND		0.00186		0.00017	

All concentrations in micrograms per kilogram (ug/kg or ppb).

Highlighted concentrations shown in bold type face exceed limits *: RPD of the LCS and LCSD exceeds the control limits

- B: The analyte was found in an associated blank, as well as in the sample.
- J: Indicates an estimated value.
- U : Analyzed for but not detected.

NA: Not applicable

ND : Not detected

¹ Sample depths are noted only in those cases where the actual sample depth differs from the depth indicated in the sample ID..

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

Sample ID	NJ Residential	NJ Non Residential	NJ Impact to	29-WGR22(13.5')		29-WGR23(6.5')	29-WGR24(9.0')	29-WGR25(6.0')	29-WGR26(9.0')	29-WGR27(6.0')	_
Sample Depth ¹	Soil Remediation	Soil Remediation	GW Soil	5.5 ft				Lo Walled (0.0)	20 11 (1120(0.0)	23-110.0)	_
Sampling Date	Standard	Standard	Screening	2/12/2014		2/12/2014	2/12/2014	2/12/2014	2/12/2014	2/12/2014	_
Matrix			Level Nov 2013	Soil		Soil	Soil	Soil	Soil	Soil	_
Dilution Factor				100		250	200	200	1000	200	_
VOA-8260C-SOIL				Result	Q	Result C	Result C	Result (Result C	Q Result	_
2-Butanone	3,100	44,000	0.9	0.99	U	2.3 L	1.7	1.8	J 9.9 L	1.9	-11
Acetone	70,000	NA	19		U	2.3	1.7 (1.8	9.9	1.9	-11
Benzene	2	5	0.005	0.097	J	0.63	0.41	1.9	13	0.34	- 4
Carbon disulfide	7,800	110,000	6	0.2	Ū	0.47 L	0.34	0.37	2 1	0.38	11
Cyclohexane	NA	NA	NA	19		35	39	28	280	26	_
Ethylbenzene	7,800	110,000	13	10		33	17	16	130	6.8	-
Isopropylbenzene	NA	NA	NA	2.8		9.3	4.4	4.5	35	3	-
Methylcyclohexane	NA	NA	NA	57		160	96	50	560	68	-
Toluene	6,300	91,000	7	0.2	u	0.47 L	0.16	0.13	0.82	0.38	T
Xylenes, Total	12,000	170,000	19	47	Ť	140	66	57	490	0.38	-
Total VOC Concentration	NA	NA	NA	135.897	\neg	377.93	222.97	157.53	1788.82	104.52	۳
Concentration	NA	NA	NA	57.097		173.63	83.57	75.03	633.82	7.52	_

- All concentrations in micrograms per kilogram (ug/kg or ppb).

 Highlighted concentrations shown in bold type face exceed limits

 *: RPD of the LCS and LCSD exceeds the control limits

 B: The analyte was found in an associated blank, as well as in the sample.
- J: Indicates an estimated value.
- U : Analyzed for but not detected.
- NA : Not applicable
- ND : Not detected
- ¹ Sample depths are noted only in those cases where the actual sample depth differs from the depth indicated in the sample ID..

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

Sample ID	NJ Residential	NJ Non Residential	NJ Impact to	29-WGR28(6.0')	\neg	29-WGR29(2.5')	29-WGR29(12.5')	29-WGS21(1.0')		29-WGS22(8.5')		29-WGS23(10.5')	٦
Sample Depth ¹	Soil Remediation	Soil Remediation	GW Soil	1/					7	20 11 2022 (010)		20 11 0.020(10.0)	-
Sampling Date	Standard	Standard	Screening	2/12/2014		2/12/2014	2/12/2014	2/12/2014	\neg	2/12/2014	\neg	2/12/2014	٦
Matrix			Level Nov 2013	Soil		Soil	Duplicate of 29-WGR29(2.5')	Soil	\neg	Soil		Soil	٦
Dilution Factor				1		1	1	1		1		100	_
VOA-8260C-SOIL				Result	Q	Result	Q Result Q	Result	Q	Result	Q	Result (5
2-Butanone	3,100	44,000	0.9	0.0044	J	0.0048	U 0.0048 U	0.0048	U	0.0042	Ū	0.8 (Ū
Acetone	70,000	NA	19	0.039	В	0.051	B 0.027 B	0.014	В	0.0058	В	0.8	Ū
Benzene	2	5	0.005	0.0002	J	0.00097	U 0.00097 U	0.00096	U	0.00084	U	0.16 U	Ū
Carbon disulfide	7,800	110,000	6	0.00023	J	0.00097	U 0.00097 U	0.00096	U	0.00084	Ü	0.16 U	Ū
Cyclohexane	NA	NA	NA	0.0069		0.00097	U 0.00097 U	0.00096	U	0.00084	U	13	٦
Ethylbenzene	7,800	110,000	13	0.0014		0.00097	U 0.00097 U	0.00096	U	0.00084	U	4.3	٦
Isopropylbenzene	NA	NA	NA	0.00096		0.00097	U 0.00097 U	0.00096	U	0.00084	U	1.9	٦
Methylcyclohexane	NA	NA	NA	0.014		0.00097	U 0.00097 U	0.00021	J	0.00018	J	42	٦
Toluene	6,300	91,000	7	0.00034	J	0.00097	U 0.00097 U	0.00019	J	0.00019	J	0.067	J
Xylenes, Total	12,000	170,000	19	0.0055		0.0019	U 0.0019 U	0.0019	U	0.0017	U	23	٦
Total VOC Concentration	NA	NA	NA	0.03393		ND	ND	0.0004		0.00037		84.267	٦
Concentration	NA	NA	NA	0.00744		ND	ND	0.00019		0.00019		27.367	٦

All concentrations in micrograms per kilogram (ug/kg or ppb). Highlighted concentrations shown in bold type face exceed limits

- *: RPD of the LCS and LCSD exceeds the control limits
- B: The analyte was found in an associated blank, as well as in the sample.
- J: Indicates an estimated value.
- U : Analyzed for but not detected.
- NA : Not applicable
- ND : Not detected
- ¹ Sample depths are noted only in those cases where the actual sample depth differs from the depth indicated in the sample ID..

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

Sample ID	NJ Residential	NJ Non Residential	NJ Impact to	29-WGS24(6.5')		29-WGS25(6.0')		29-WGS26(6.0')		29-WGS27(6.0')	7	29-WGS28(7.0')	T	29-WGS29(2.3')	
Sample Depth ¹	Soil Remediation	Soil Remediation	GW Soil										\neg		
Sampling Date	Standard	Standard	Screening	2/12/2014		2/12/2014		2/12/2014		2/12/2014		2/12/2014	\neg	2/12/2014	
Matrix			Level Nov 2013	Soil		Soil		Soil		Soil		Soil	\neg	Soil	
Dilution Factor				250		200		50		50		50		1	
VOA-8260C-SOIL				Result	Q	Result	Q								
2-Butanone	3,100	44,000	0.9	2.1	U	1.9	U	0.47	U	0.59	U	0.42	U	0.0057	
Acetone	70,000	NA	19	2.1	U	1.9	U	0.47	U	0.59	U	0.42	U	0.043	В
Benzene	2	5	0.005	0.08	J	0.1	J	0.28		0.082	J	0.085	U	0.00075	J
Carbon disulfide	7,800	110,000	6	0.41	U	0.37	U	0.095	U	0.12	U	0.085	U	0.00026	J
Cyclohexane	NA	NA	NA	19		25		9.3		1.6		3.7		0.067	
Ethylbenzene	7,800	110,000	13	19		7.9		4.7		0.76		0.085	U	0.00092	U
Isopropylbenzene	NA	NA	NA	7.6		3.4		1.3		0.24		0.73		0.00044	J
Methylcyclohexane	NA	NA	NA	140		72		24		7.3		16		0.2	
Toluene	6,300	91,000	7	0.41	U	1.9		7.3		0.21		0.085	U	0.00018	J
Xylenes, Total	12,000	170,000	19	83		35		27		1.2		0.17	U	0.0018	U
Total VOC Concentration	NA	NA	NA	268.68		145.3		73.88		11.392		20.43		0.27433	
Concentration	NA	NA	NA	102.08		44.9		39.28		2.252		ND		0.00093	

All concentrations in micrograms per kilogram (ug/kg or ppb).

Highlighted concentrations shown in bold type face exceed limits

- *: RPD of the LCS and LCSD exceeds the control limits
- B: The analyte was found in an associated blank, as well as in the sample.
- J: Indicates an estimated value.
- U : Analyzed for but not detected.
- NA: Not applicable
- ND : Not detected
- ¹ Sample depths are noted only in those cases where the actual sample depth differs from the depth indicated in the sample ID..

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

Sample ID	NJ Residential	NJ Non Residential	NJ Impact to	29-WGT21(10.5')	29-WGT22(7.5')	T	29-WGT23(7.5')	T	29-WGT24(7.5')	T	29-WGT24(17.5')	29-WGT25(6.5')	
Sample Depth ¹	Soil Remediation	Soil Remediation	GW Soil							\top	20 (10)21(11)0)	20 11 01 20 (0.0)	\neg
Sampling Date	Standard	Standard	Screening	2/14/2014	2/14/2014	1	2/14/2014		2/14/2014	+	2/14/2014	2/12/2014	_
Matrix			Level Nov 2013	Soil	Soil		Soil		Soil	1	Duplicate of 29-WGT24(7.5')	Soil	
Dilution Factor				1	1		50		250		200	100	
VOA-8260C-SOIL				Result C	Result	Q	Result	Q	Result	Q	Result Q	Result	0
2-Butanone	3,100	44,000	0.9	0.0039 U	0.0047	U	0.41	U	2.1	U	1.8 U	0.89	Ū
Acetone	70,000	NA	19	0.0066 B	0.02		0.41	U	2.1	U	1.8 U	0.89	U
Benzene	2	5	0.005	0.00078 U	0.00094	U	0.083	U	0.42	U	0.35 U	0.025	J
Carbon disulfide	7,800	110,000	6	0.00078 U	0.0074		0.083	U	0.42	U	0.35 U	0.18	Ū
Cyclohexane	NA	NA	NA	0.00078 U	0.00094	U	1		22		14	14	
Ethylbenzene	7,800	110,000	13	0.00078 U	0.00094	U	0.046	J	2.5		2.6	5.5	
Isopropylbenzene	NA	NA	NA	0.00078 U	0.003		0.98		1.9		1.5	3.6	
Methylcyclohexane	NA	NA	NA	0.00025 J	0.02		11		56		35	47	
Toluene	6,300	91,000	7	0.00015 J	0.00035	J	0.083	U	0.07	J	0.08 J	0.47	
Xylenes, Total	12,000	170,000	19	0.0016 U	0.0019	U	0.13	J	11		13	37	
Total VOC Concentration		NA	NA	0.0004	0.05075		14.156		93.47		66.18	107.595	
Concentration	NA	NA	NA	0.00015	0.00035		0.176		13.57		15.68	42.995	

All concentrations in micrograms per kilogram (ug/kg or ppb). Highlighted concentrations shown in bold type face exceed limits

- *: RPD of the LCS and LCSD exceeds the control limits
- B: The analyte was found in an associated blank, as well as in the sample.
- J : Indicates an estimated value.
- U : Analyzed for but not detected.
- NA : Not applicable
- ND : Not detected
- ¹ Sample depths are noted only in those cases where the actual sample depth differs from the depth indicated in the sample ID..

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

Sample ID	NJ Residential	NJ Non Residential	NJ Impact to	29-WGT26(6.5')	29-WGT27(6	.5')	29-WGT28(6.0')		29-WGT29(6.0')		29-WGU21(3.0')		29-WGU22(10.5')
Sample Depth ¹	Soil Remediation	Soil Remediation	GW Soil		1								
Sampling Date	Standard	Standard	Screening	2/12/2014	2/12/2)14	2/12/2014		2/12/2014		2/14/2014		2/14/2014
Matrix			Level Nov 2013	Soil		Soil	Soil		Soil		Soil		Soil
Dilution Factor				100		50	50		1		1		1
VOA-8260C-SOIL				Result	Q Re	sult Q	Result	Q	Result	Q	Result	Q	Result
2-Butanone	3,100	44,000	0.9	0.87	U	.53 U	0.43	U	0.014	*	0.0047	U	0.0045
Acetone	70,000	NA	19	0.87	U C	.53 U	0.43	U	0.058	В	0.0088	В	0.0045
Benzene	2	5	0.005	0.062	J C	.11 U	0.085	U	0.0024		0.00094	U	0.0009
Carbon disulfide	7,800	110,000	6	0.17	U	.11 U	0.085	U	0.00048	J	0.00094	U	0.0009
Cyclohexane	NA	NA	NA	11		3.7	0.18		0.12		0.00094	U	0.0009
Ethylbenzene	7,800	110,000	13	11		2	0.015	J	0.00096	U	0.00094	U	0.0009
Isopropylbenzene	NA	NA	NA	3.6		1.4	0.023	J	0.0019		0.00094	U	0.0009
Methylcyclohexane	NA	NA	NA	55		27	1.3		0.43		0.00016	J	0.0009
Toluene	6,300	91,000	7	0.17	U 0	.11 U	0.085	U	0.00022	J	0.00017	J	0.0009
Xylenes, Total	12,000	170,000	19	26	0	.13 J	0.17	U	0.0011	J	0.0019	U	0.0018
Total VOC Concentration	NA	NA	NA	106.662	34	.23	1.698		0.5701		0.00033		ND
Concentration	NA	NA	NA	37.062	2	.13	0.015		0.00372		0.00017		ND

All concentrations in micrograms per kilogram (ug/kg or ppb). Highlighted concentrations shown in bold type face exceed limits

- *: RPD of the LCS and LCSD exceeds the control limits
- B: The analyte was found in an associated blank, as well as in the sample.
- J : Indicates an estimated value.
- U : Analyzed for but not detected.
- NA : Not applicable
- ND : Not detected
- ¹ Sample depths are noted only in those cases where the actual sample depth differs from the depth indicated in the sample ID..

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

Sample ID	NJ Residential	NJ Non Residential	NJ Impact to	29-WGU23(11.6')	29-WGU24(10.5')		29-WGU25(10.5')		29-WGU26(7.0')		29-WGU27(7.6')		29-WGU28(2.0')
Sample Depth ¹	Soil Remediation	Soil Remediation	GW Soil	6.6 ft									
Sampling Date	Standard	Standard	Screening	2/14/2014	2/14/2014		2/14/2014		2/14/2014		2/14/2014		2/14/2014
Matrix			Level Nov 2013	Soil	Soil		Soil		Soil		Soil		Soil
Dilution Factor				1	1		1		1		50		50
VOA-8260C-SOIL				Result	Q Result	Q	Result	Q	Result	Q	Result	Q	Result (
2-Butanone	3,100	44,000	0.9	0.0046	U 0.0051	U	0.003	J	0.0056		0.49	U	0.43
Acetone	70,000	NA	19	0.027	0.013	В	0.028	В	0.056	В	0.49	U	0.43 L
Benzene	2	5	0.005	0.00092	U 0.001	U	0.0033		0.00087	U	0.097	U	0.024
Carbon disulfide	7,800	110,000	6	0.00092	U 0.00091	J	0.00052	J	0.00034	J	0.097	U	0.087 l
Cyclohexane	NA	NA	NA	0.00092	U 0.036		0.047		0.028		0.097	U	1.4
Ethylbenzene	7,800	110,000	13	0.00092	U 0.0042		0.054		0.0035		0.097	U	0.012
Isopropylbenzene	NA	NA	NA	0.00092	U 0.0025		0.0077		0.003		0.034	J	0.049
Methylcyclohexane	NA	NA	NA	0.00092	U 0.089		0.049		0.06		0.097	U	4.1
Toluene	6,300	91,000	7	0.00092	U 0.00025	J	0.038		0.00029	J	0.097	U	0.087 L
Xylenes, Total	12,000	170,000	19	0.0018	U 0.011		0.22		0.0053		0.19	Ü	0.17 l
Total VOC Concentration	NA	NA	NA	0.027	0.14386		0.42252		0.10603		0.034		5.585
Concentration	NA	NA	NA	ND	0.01545		0.3153		0.00909		ND		0.036

- All concentrations in micrograms per kilogram (ug/kg or ppb).
 Highlighted concentrations shown in bold type face exceed limits
 *: RPD of the LCS and LCSD exceeds the control limits
 B: The analyte was found in an associated blank, as well as in the sample.
- J: Indicates an estimated value.
- U : Analyzed for but not detected.
- NA: Not applicable
- ND : Not detected
- ¹ Sample depths are noted only in those cases where the actual sample depth differs from the depth indicated in the sample ID..

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

Sample ID	NJ Residential	NJ Non Residential	NJ Impact to	29-WGU29(3.0')	
Sample Depth ¹	Soil Remediation	Soil Remediation	GW Soil		
Sampling Date	Standard	Standard	Screening	2/14/2014	
Matrix			Level Nov 2013	Soil	
Dilution Factor				50	
VOA-8260C-SOIL				Result	Q
2-Butanone	3,100	44,000	0.9	0.44	U
Acetone	70,000	NA	19	0.44	U
Benzene	2	5	0.005	0.027	J
Carbon disulfide	7,800	110,000	6	0.087	U
Cyclohexane	NA	NA	NA	2.7	
Ethylbenzene	7,800	110,000	13	0.27	
Isopropylbenzene	NA	NA	NA	0.15	
Methylcyclohexane	NA	NA	NA	5	
Toluene	6,300	91,000	7	0.087	U
Xylenes, Total	12,000	170,000	19	0.034	J
Total VOC Concentration	NA	NA	NA	8.181	
Concentration	NA	NA	NA	0.331	

All concentrations in micrograms per kilogram (ug/kg or ppb).
Highlighted concentrations shown in bold type face exceed limits
*: RPD of the LCS and LCSD exceeds the control limits
B: The analyte was found in an associated blank, as well as in the sample.
J: Indicates an estimated value.
U: Analyzed for but not detected.

NA: Not applicable

ND : Not detected

¹ Sample depths are noted only in those cases where the actual sample depth differs from the depth indicated in the sample ID..

TABLE 8 **GROUNDWATER SAMPLE RESULTS**

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

							EASTERN GRID LO	CATIONS		
Sample ID	Federal	New Jersey	New Jersey	ROD-Based	29-EG-G13GW (4.5-8.5)	29-EG-G15GW(4-8)	29-EG-G15GW (14-18)	29-EG-G17GW (7-11)	29-EG-H17GW (5-9)	29-EG-I15GW (5-9)
Lab Sample ID	Maximum	Maximum	GWQS	Cleanup	460-73634-9	460-73634-4	460-73634-5	460-73634-6	460-73634-7	460-73634-8
Sampling Date	Contaminant	Contaminant		Criteria	4/1/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014
Matrix	Level	Level			Water	Water	Duplicate of 29-EG-G15GW(4-8)	Water	Water	Water
Dilution Factor					5	5	5	5	5	5
VOA-8260C-WATER					Result Q	Result Q	Result Q	Result Q	Result Q	Result (
1,1-Dichloroethane		50	50		5.0 U	5.0 U	5.0 U	5.8	4.7 J	5.0
1,1-Dichloroethene	7	2	1		5.0 U	5.0 U	5.0 U	2.5 J	2.3 J	5.0
2-Butanone (MEK)			300		25 U	25 U	25 U	25 U	25 U	25 (
4-Methyl-2-pentanone (MIBK)			NE		25 U	25 U	25 U	25 U	25 U	25 (
Acetone			6000		25 U	25 U	25 U	25 U	25 U	25
Benzene	5	1	1	1	0.60 J	5.0 U	5.0 U	360	630	100
Chloroethane			5		5.0 U	5.0 U	5.0 U	5.0 U	33	5.0
Cyclohexane			NE		480	650	450	460	510	610
Ethylbenzene	700		700	5	680	820	430	220	440	1400
Isopropylbenzene			700		150	130	85	130	160	190
Methylcyclohexane			NE		680	810	620	730	790	920
m-Xylene & p-Xylene	Total Xyl:10,000	Total Xyl:1000	2	Total Xyl: 2	160	1700	1000	730	1600	270
o-Xylene	Total Xyl:10,000	Total Xyl:1000	2	Total Xyl: 2	5.0 U	1.2 J	0.94 J	120	130	5.0
Toluene	1000		600	5	5.0 U	5.0 U	5.0 U	1.2 J	2.9 J	5.0
Total BTEX Concentration					840.6	2521.2	1430.94	1431.2	2802.9	1770

All concentrations in ug/L (parts per billion)
Highlighted concentrations in boldface type exceed limits.

J: Indicates an estimated value.

U: Analyzed for but not detected.

NE = Not Established

TABLE 8 GROUNDWATER SAMPLE RESULTS

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

								WESTERN GR	RID LOCATIONS		
Sample ID	Federal	New Jersey	New Jersey	ROD-Based	29-WG-Q23GW (5.5-9.5)	29-WG-Q24GW (4.5-8.5	5)	29-WG-Q25GW (5-9)	29-WG-Q26GW (5-9)	29-WG-R23GW (5.5-9.5)	29-WG-R24GW (8.5-12.5
Lab Sample ID	Maximum	Maximum	GWQS	Cleanup	460-73634-13	460-73634-12		460-73634-11	460-73634-10	460-73634-14	460-73634-18
Sampling Date	Contaminant	Contaminant		Criteria	4/1/2014	4/1/2014		4/1/2014	4/1/2014	4/1/2014	4/1/2014
Matrix	Level	Level			Water	Water		Water	Water	Water	Water
Dilution Factor					10	10		25	25	20	25
VOA-8260C-WATER					Result Q	Result C	2	Result Q	Result Q	Result Q	Result (
1,1-Dichloroethane		50	50		10 U	10 L	J	25 U	25 U	20 U	25 l
1,1-Dichloroethene	7	2	1		10 U	10 L	J	25 U	25 U	20 U	25 U
2-Butanone (MEK)			300		50 U	24	J	130 U	130 U	100 U	130 l
4-Methyl-2-pentanone (MIBK)			NE		50 U	23	J	130 U	130 U	100 U	130 U
Acetone			6000		190	170		130 U	130 U	100 U	130 U
Benzene	5	1	1	1	2.6 J	13		230	110	120	870
Chloroethane			5		10 U	10 L	J	25 U	25 U	20 U	25 l
Cyclohexane			NE		55	220		220	570	590	490
Ethylbenzene	700		700	5	490	620		1300	1300	1500	1300
Isopropylbenzene			700		140	150		160	200	140	120
Methylcyclohexane			NE		360	490		410	1100	840	660
m-Xylene & p-Xylene	Total Xyl:10,000	Total Xyl:1000	2	Total Xyl: 2	2300	3600		4900	5200	5900	4600
o-Xylene	Total Xyl:10,000	Total Xyl:1000	2	Total Xyl: 2	10 U	8.9	J	25 U	25 U	1500	560
Toluene	1000		600	5	10 U	6.3	J	11 J	25 U	400	1000
Total BTEX Concentration					2792.6	4248.2	T	6441	6610	9420	8330

All concentrations in ug/L (parts per billion)

Highlighted concentrations in boldface type exceed limits.

J : Indicates an estimated value.
U : Analyzed for but not detected.

NE = Not Established

TABLE 8 GROUNDWATER SAMPLE RESULTS

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

						WE	STERN GRID LOCAT	IONS	3	
Sample ID	Federal	New Jersey	New Jersey	ROD-Based	29-WG-R26GW (6.5-1	0.5)	29-WG-S24GW (4.5-	3.5)	29-WG-S26GW ((5-9
Lab Sample ID	Maximum	Maximum	GWQS	Cleanup	460-73634-17		460-73634-15		460-73634-16	
Sampling Date	Contaminant	Contaminant		Criteria	4/1/2014		4/1/2014		4/1/2014	
Matrix	Level	Level			Water		Water		Water	
Dilution Factor					25		20		20	
VOA-8260C-WATER					Result	Q	Result	Q	Result	C
1,1-Dichloroethane		50	50		25	U	20	U	20	L
1,1-Dichloroethene	7	2	1		25	U	20	U	20	L
2-Butanone (MEK)			300		130	U	100	U	100	L
4-Methyl-2-pentanone (MIBK)			NE		130	U	100	U	100	L
Acetone			6000		130	U	100	U	100	L
Benzene	5	1	1	1	850		85		400	
Chloroethane			5		25	U	20	U	20	U
Cyclohexane			NE		530		470		400	
Ethylbenzene	700		700	5	1500		860		740	and the same of th
Isopropylbenzene			700		180		130		74	
Methylcyclohexane			NE		1000		1200		560	
m-Xylene & p-Xylene	Total Xyl:10,000	Total Xyl:1000	2	Total Xyl: 2	5000		3700		3200	
o-Xylene	Total Xyl:10,000	Total Xyl:1000	2	Total Xyl: 2	190		14	J	1300	
Toluene	1000		600	5	110		5.0	J	3600	
Total BTEX Concentration					7650		4664		9240	

All concentrations in ug/L (parts per billion)

Highlighted concentrations in boldface type exceed limits.

J: Indicates an estimated value. U: Analyzed for but not detected.

NE = Not Established

TABLE 9 FIELD BLANK AND TRIP BLANK SAMPLE RESULTS

Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

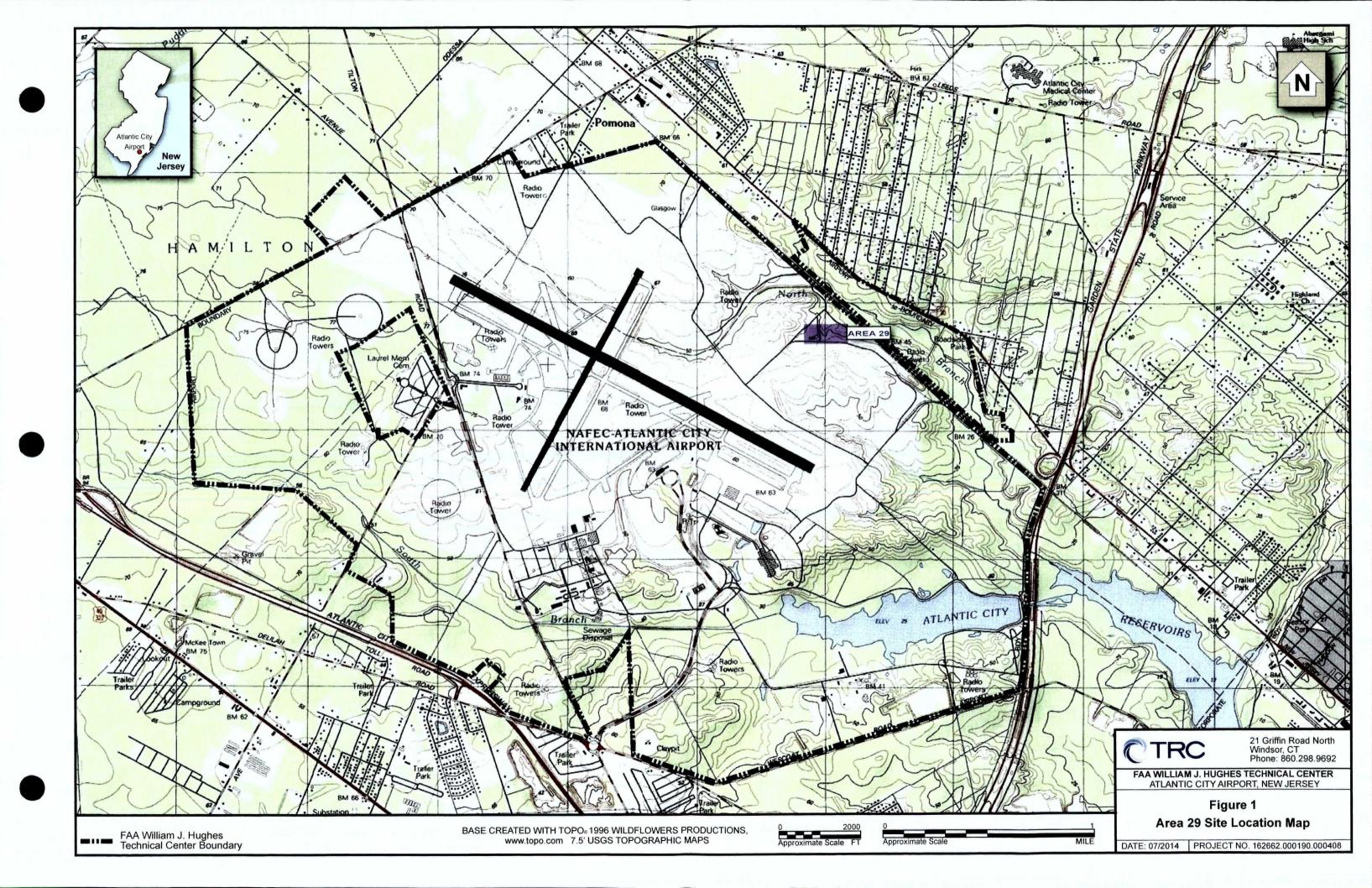
Sample ID		ROD-Based	FB021114		FB021214		FB021414	
Sampling Date	GWQS	Cleanup	2/11/2014		2/12/2014		2/14/2014	
Matrix		Criteria	Water		Water		Water	
Dilution Factor			1		1		1	
VOA-8260C-WATER			Result	Q	Result	Q	Result	Q
1,1,1-Trichloroethane	30		1.0	U	1.0	U	1.0	U
1,1,2,2-Tetrachloroethane	1		1.0	U	1.0	U	1.0	U
1,1,2-Trichloroethane	NA		1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	3		1.0	U	1.0	U	1.0	U
1,1-Dichloroethene	50		1.0	U	1.0	U	1.0	U
1,2,3-Trichlorobenzene	1		1.0	U	1.0	U	1.0	U
1,2,4-Trichlorobenzene	NA		1.0	U	1.0	U	1.0	U
1,2-Dibromo-3-Chloropropane	9		1.0	U	1.0	U	1.0	U
1,2-Dibromoethane	0.02		1.0	U	1.0	U	1.0	U
1,2-Dichlorobenzene	600		1.0	U	1.0	U	1.0	U
1,2-Dichloroethane	2		1.0	U	1.0	U	1.0	U
1,2-Dichloropropane	1		1.0	U	1.0	U	1.0	U
1,3-Dichlorobenzene	600		1.0	U	1.0	U	1.0	U
1,4-Dichlorobenzene	75		1.0	U	1.0	U	1.0	U
1,4-Dioxane	10		50	U	50	U	50	U
2-Butanone	300		5.0	U	5.0	U	5.0	U
2-Hexanone	300		5.0	U	5.0	U	5.0	U
4-Methyl-2-pentanone	NA		5.0	U	5.0	U	5.0	U
Acetone	6000		5.0	U	5.0	U	5.0	U
Benzene	1	1	1.0	U	1.0	U	1.0	U
Bromochloromethane	4		1.0	U	1.0	U	1.0	U
Bromodichloromethane	10		1.0	U	1.0	U	1.0	U
Bromoform	700		1.0	U	1.0	U	1.0	U
Bromomethane	1		1.0	U	1.0	U	1.0	U
Carbon disulfide	50		1.0	U	1.0	U	1.0	U
Carbon tetrachloride	NA		1.0	U	1.0	U	1.0	U
Chlorobenzene	1		1.0	U	1.0	U	1.0	U
Chloroethane	5		1.0	U	1.0	U	1.0	U
Chloroform	70		1.0	U	1.0	U	1.0	U
Chloromethane	NA		1.0	U	1.0	U	1.0	U
cis-1,2-Dichloroethene	70		1.0	U	1.0	U	1.0	U
cis-1,3-Dichloropropene	NA		1.0	U	1.0	U	1.0	U
Cyclohexane	NA		1.0	U	1.0	U	1.0	U
Dibromochloromethane	1		1.0	U	1.0	U	1.0	U
Dichlorodifluoromethane	1000		1.0	U	1.0	U	1.0	U
Ethylbenzene	700	5	1.0	U	1.0	U	1.0	U
Freon TF	0.03		1.0	U	1.0	U	1.0	U
Isopropylbenzene	700		1.0	U	1.0	U	1.0	U
Methyl acetate	7000		5.0	U	5.0	U	5.0	U
Methylcyclohexane	70		1.0	U	1.0	U	1.0	U
Methylene Chloride	NA		1.0	U	1.0	U	1.0	U
MTBE	3		1.0	U	1.0	U	1.0	U
Styrene	NA	Total Xyl: 2	1.0	U	1.0	U	1.0	U
Tetrachloroethene	NA	Total Xyl: 2	1.0	U	1.0	U	1.0	U
Toluene	100		1.0	U	1.0	U	1.0	U
trans-1,2-Dichloroethene	1		1.0	U	1.0	U	1.0	U
trans-1,3-Dichloropropene	600	5	1.0	U	1.0	U	1.0	U
Trichloroethene	100		1.0	U	1.0	U	1.0	U
Trichlorofluoromethane	1		1.0	U*	1.0	U*	1.0	U
Vinyl chloride	1		1.0	U	1.0	U	1.0	U
Xylenes, Total	2000		2.0	U	2.0	U	2.0	U
Total VOC Concentration	1		0.0		0.0		0.0	
GRO								
	NA NA	NA	Not Analyzed	_	25	U	Not Analyzed	
C10-C44	NA	NA	Not Analyzed		0.13	U	Not Analyzed	

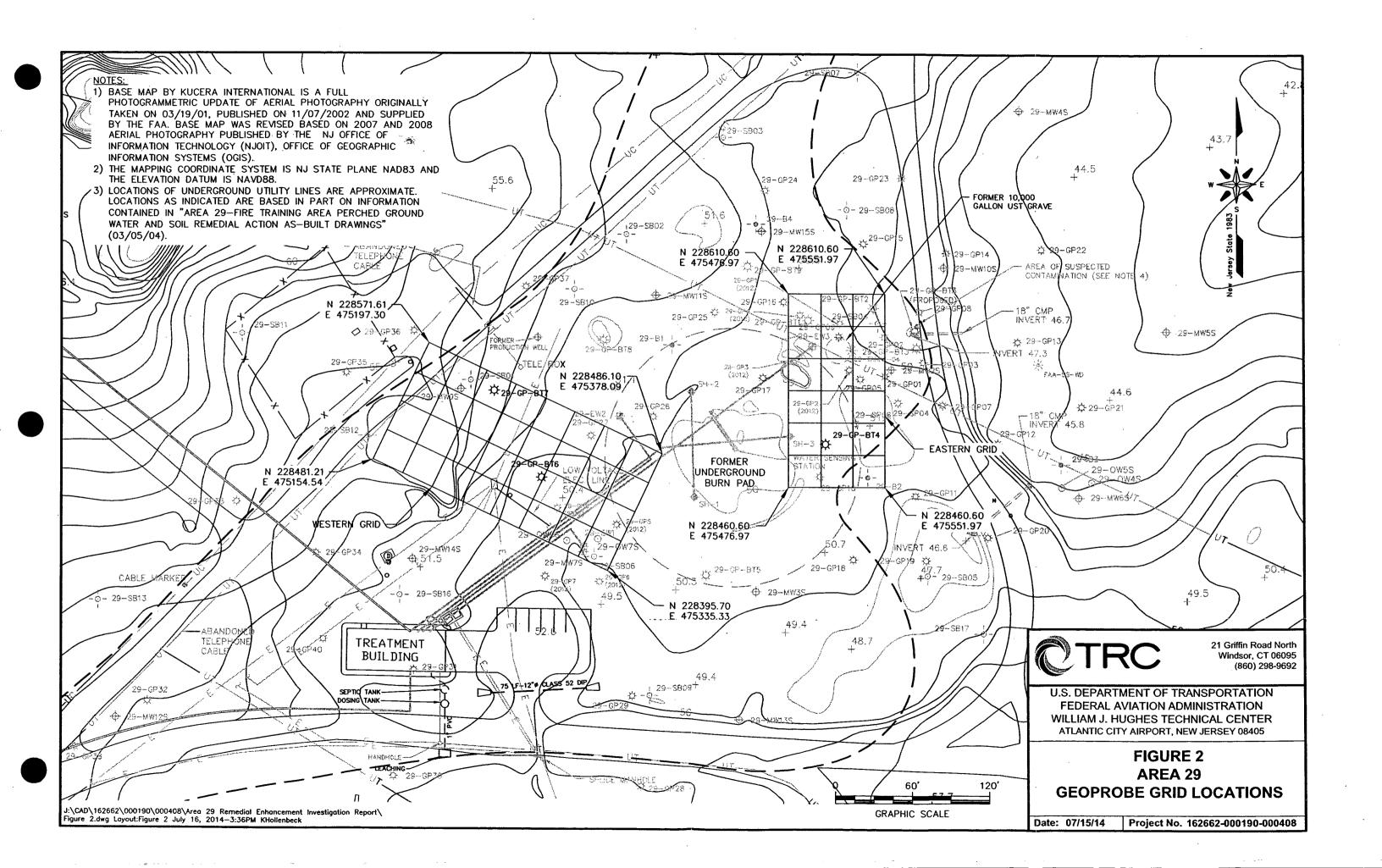
All concentrations in ug/L (parts per billion)

U : Analyzed for but not detected.
U *: LCS or LCSD exceeds the control limits.

NA : Not applicable

TABLE 9 FIELD BLANK AND TRIP BLANK SAMPLE RESULTS


Area 29 Remedial Enhancement Investigation FAA William J. Hughes Technical Center

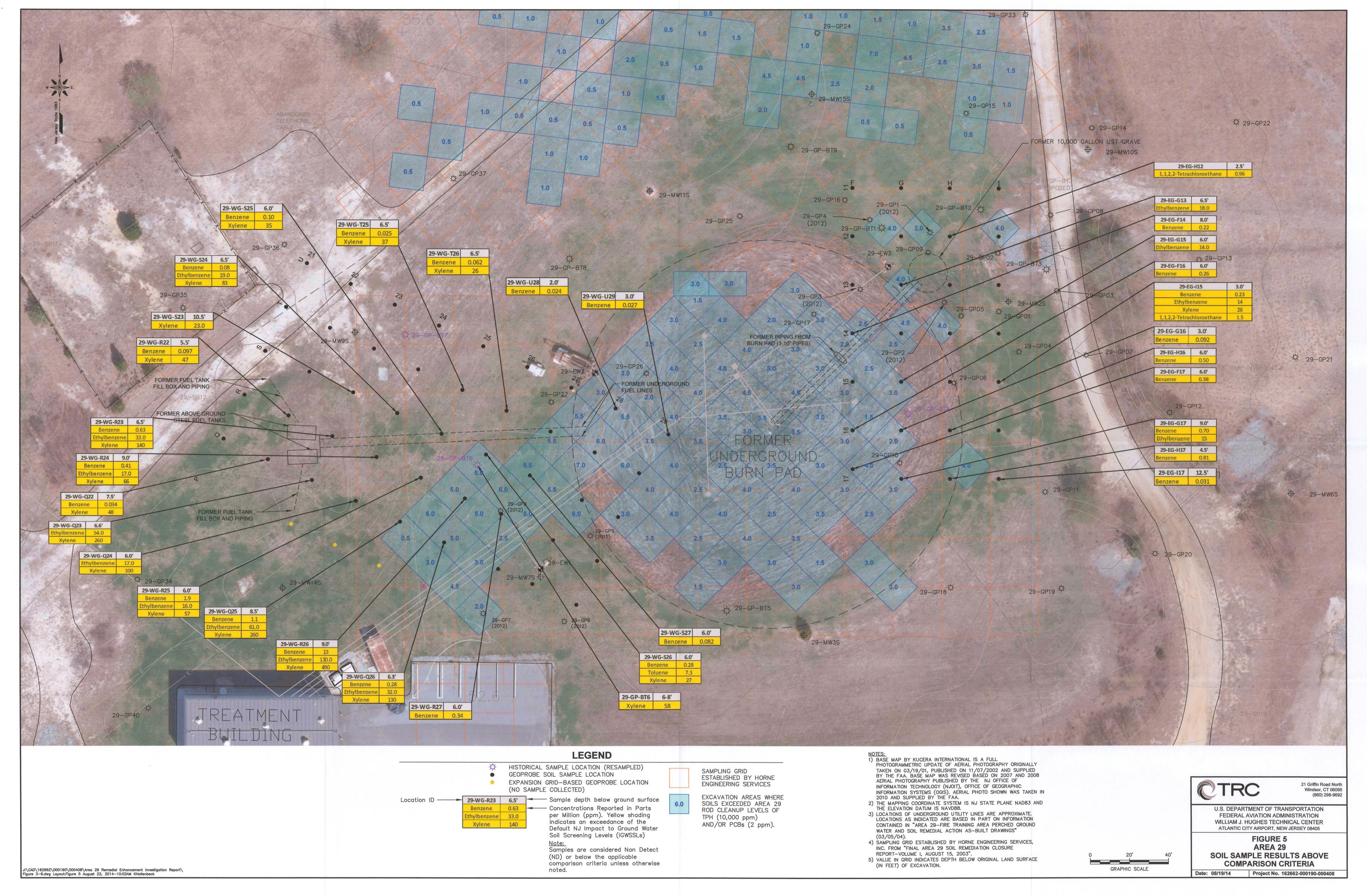

Client ID	New Jersey	ROD-Based	FB040114		TB040114	
Sampling Date	GWQS	Cleanup	4/1/2014		4/1/2014	
Matrix		Criteria	Water		Water	
Dilution Factor			1		1	
VOA-8260C-WATER			Result	Q	Result	Q
1,1,1-Trichloroethane	30		1.0	U	1.0	U
1,1,2,2-Tetrachloroethane	1		1.0	U	1.0	U
1,1,2-Trichloro-1,2,2-trifluoroethane	NA		1.0	u	1.0	U
1,1,2-Trichloroethane	3		1.0	U	1.0	U
1,1-Dichloroethane	50		1.0	U	1.0	U
1,1-Dichloroethene	1		1.0	U	1.0	U
1,2,3-Trichlorobenzene	NA		1.0	u	1.0	U
1,2,4-Trichlorobenzene	9		1.0	u	1.0	Ū
1,2-Dibromo-3-Chloropropane	0.02		1.0	Ū	1.0	Ū
1,2-Dichlorobenzene	600		1.0	ŭ	1.0	ũ
1,2-Dichloroethane	2		1.0	ū	1.0	u
1,2-Dichloropropane	1 1		1.0	Ū	1.0	Ū
1,3-Dichlorobenzene	600		1.0	ū	1.0	Ū
1,4-Dichlorobenzene	75		1.0	ŭ	1.0	Ū
1,4-Dioxane	10		50	ŭ	50	Ū
2-Butanone (MEK)	300		5.0	ŭ	5.0	Ü
2-Hexanone	300		5.0	ŭ	5.0	<u>u</u>
4-Methyl-2-pentanone (MIBK)	NA NA		5.0	히	5.0	<u>U</u>
Acetone	6000		5.0	ü	5.0	<u>u</u>
Benzene	1	1	1.0	ü	1.0	U
Bromoform	4	······································	1.0	ŭ	1.0	<u>U</u>
Bromomethane	10		1.0	ü	1.0	u
Carbon disulfide	700		1.0	ü	1.0	<u>U</u>
Carbon tetrachloride	700		1.0	퓝	1.0	<u>U</u>
Chlorobenzene	50	-	1.0	U	1.0	U
Chlorobromomethane	NA NA		1.0	뷥		<u>U</u>
Chlorodibromomethane	1	-		_	1.0	
Chloroethane	5		1.0	U	1.0	U
Chloroform	70		1.0		1.0	U
Chloromethane			1.0	U	1.0	U
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 70		1.0	Ų.	1.0	U
cis-1,2-Dichloroethene	70	-	1.0	빞	1.0	U
cis-1,3-Dichloropropene	NA NA		1.0	U	1.0	U
Cyclohexane	NA NA		1.0	U	1.0	U
Dichlorobromomethane	1		1.0	믹	1.0	U
Dichlorodifluoromethane	1000		1.0	U	1.0	U
Ethylbenzene	700	. 5	1.0	U	1.0	U
Ethylene Dibromide	0.03		1.0	U	1.0	U
Isopropylbenzene	700		1.0	U	1.0	U
Methyl acetate	7000		5.0	U	5.0	U
Methyl tert-butyl ether	70		1.0	빈	1.0	U
Methylcyclohexane	NA		1.0	U	1.0	U
Methylene Chloride	3		1.0	U	1.0	U
m-Xylene & p-Xylene	NA	Total X: 2	1.0	U	1.0	U
o-Xylene	. NA	Total X: 2	1.0	U	1.0	U
Styrene	100		1.0	U	1.0	U
Tetrachloroethene	1		1.0	U	1.0	U
Toluene	600	5	1.0	U	1.0	Ü
trans-1,2-Dichloroethene	100		1.0	U	1.0	U
trans-1,3-Dichloropropene	1		1.0	U	1.0	U
Trichloroethene	1		1.0	U	1.0	U
Trichlorofluoromethane	2000		1.0	Ū	1.0	Ū
	<del></del>			-		
Vinyl chloride	1		1.0	ul	1.0	U

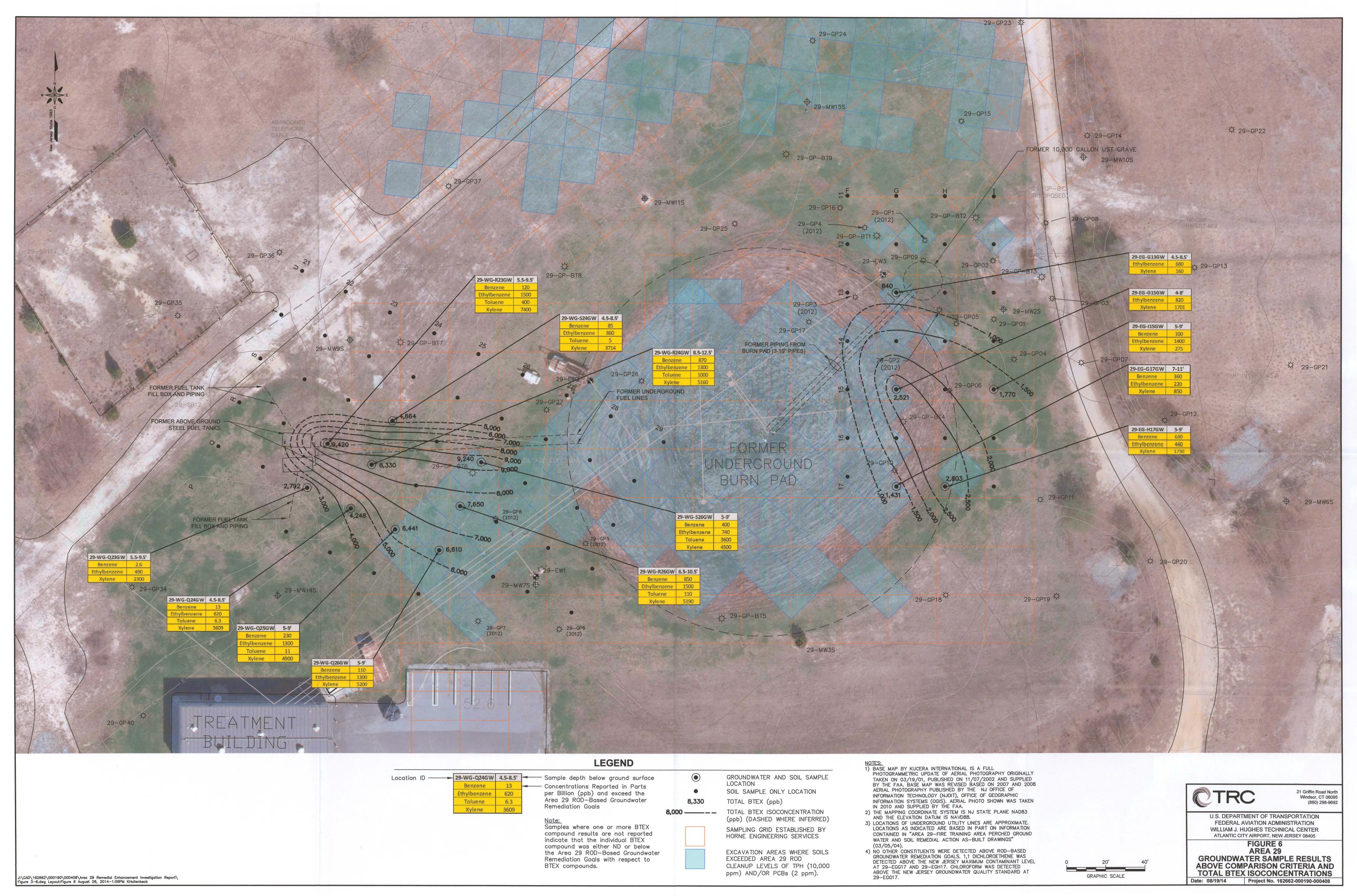
All concentrations in ug/L (parts per billion)

U : Analyzed for but not detected.

NA : Not applicable






GRAPHIC SCALE

J:\CAD\162662\000190\000408\Area 29 Remedial Enhancement Investigation Report\Figure 3-6.dwg Layout:Figure 3 August 22, 2014-9:37AM KHollenbeck









#### **ANALYTICAL REPORT**

Job Number: 460-71107-1

Job Description: Area 29 Remedial Enhancment Investigatio

For:

TRC Environmental Corporation 21 Griffin Road North
Windsor, CT 06095

Attention: Mr. Mark Winbourne

Approved for release.

Janet Mosley

Manager of Project Management Assist
2/26/2014 2:44 PM

Designee for
Melissa Haas, Project Manager I
777 New Durham Road, Edison, NJ, 08817
(203)944-1310
melissa.haas@testamericainc.com
02/26/2014

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Edison Project Manager.

TestAmerica Edison Certifications and Approvals: Connecticut: CTDOH #PH-0200, New Jersey: NJDEP (NELAP) #12028, New York: NYDOH (NELAP) #11452, NYDOH (ELAP) #11452, Pennsylvania: PADEP (NELAP) 68-00522 and Rhode Island: RIDOH LAO00132





		•		
				•
				•
	•			
		,		
	,			
		•		
			•	

# **Table of Contents**

Cover Title F	Page	1
Data Summ	aries	5
Report Na	rrative	5
Sample Su	ımmary	8.
Executive	Summary	9
Method Su	ımmary	13
Method / A	Analyst Summary	14
Sample Da	atasheets	15
Data Qual	ifiers	70
Lab Chron	iicle	71
Certification	on Summary	78
Organic Sar	mple Data	79
	DA	79
8260C .	· · · · · · · · · · · · · · · · · · ·	79
826	0C QC Summary	80
826	0C Sample Data	141
Star	ndards Data	220
	8260C ICAL Data	220
	8260C CCAL Data	248
Raw	v QC Data	272
	8260C Blank Data	272
	8260C LCS/LCSD Data	296
	8260C MS/MSD Data	
826	0C Run Logs	346
	0C Prep Data	362
	00 1 top Data	370
GC VOA		272

# **Table of Contents**

8015D_GRO	373
8015D_GRO QC Summary	374
8015D_GRO Sample Data	379
Standards Data	382
8015D_GRO ICAL Data	382
8015D_GRO CCAL Data	385
Raw QC Data	389
8015D_GRO Blank Data	389
8015D_GRO LCS/LCSD Data	392
8015D_GRO Run Logs	398
GC Semi VOA	400
8015D_DRO	400
8015D_DRO QC Summary	401
8015D_DRO Sample Data	405
Standards Data	409
8015D_DRO ICAL Data	409
8015D_DRO CCAL Data	412
Raw QC Data	416
8015D_DRO Blank Data	416
8015D_DRO LCS/LCSD Data	425
8015D_DRO Run Logs	433
8015D_DRO Prep Data	435
Inorganic Sample Data	436
General Chemistry Data	436
Gen Chem Cover Page	437
Gen Chem MDL	438

# **Table of Contents**

Gen Chem Analysis Run Log	440
Shipping and Receiving Documents	442
Client Chain of Custody	443
Sample Receipt Checklist	446

#### **CASE NARRATIVE**

**Client: TRC Environmental Corporation** 

**Project: Area 29 Remedial Enhancment Investigatio** 

Report Number: 460-71107-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### RECEIPT

The samples were received on 02/12/2014; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 1.1 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process is begun, such as arrival on ice, etc.

#### DIESEL RANGE ORGANICS

Sample 460-71107-1 was analyzed for Diesel Range Organics in accordance with EPA SW-846 Method 8015B - DRO. The samples were prepared on 02/18/2014 and analyzed on 02/19/2014.

No difficulties were encountered during the DRO analysis.

All quality control parameters were within the acceptance limits.

#### **GASOLINE RANGE ORGANICS**

Sample 460-71107-1 was analyzed for Gasoline Range Organics in accordance with EPA SW-846 Method 8015B - GRO. The samples were analyzed on 02/21/2014.

Acetone was detected in method blank MB 460-208752/7 at a level exceeding the reporting limit. If the associated sample reported a result above the MDL and/or RL, the result has been "B" flagged. Acetone was detected in method blank MB 460-208845/6 at a level exceeding the reporting limit. If the associated sample reported a result above the MDL and/or RL, the result has been "B" flagged.

Refer to the QC report for details.

No other difficulties were encountered during the GRO analysis.

All quality control parameters were within the acceptance limits.

#### **VOLATILE ORGANICS**

Samples 460-71107-2 through 460-71107-18 were analyzed for Volatile organics in accordance with EPA SW-846 Methods 8260C. The samples were prepared on 02/17/2014 and analyzed on 02/19/2014, 02/20/2014, 02/22/2014 and 02/23/2014.

The continuing calibration verification (CCV) associated with batch 208257 recovered above the upper control limit for Acetone and Chloroethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Surrogate 1,2-Dichloroethane-d4 recovery for the following sample was outside control limits: 29-WGR26(9.0') (460-71107-16). urrogate recoveries for the other three system monitoring compounds were within control limits; therefore, re-analysis was not performed

The continuing calibration verification (CCV) associated with batch 208431 recovered outside control limits for Dichlorodifluoromethane.

Bromomethane, Trichlorofluoromethane, and Bromoform. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Several analytes failed the recovery criteria low for the MS of sample 460-71107-14 in batch 460-208752.

Several analytes failed the recovery criteria low for the MSD of sample 460-71107-14 in batch 460-208257. Several analytes exceeded the rpd limit.

1,1,2-Trichloroethane, Bromoform and Dibromochloromethane failed the recovery criteria low for the MS of sample 460-71107-8 in batch 460-208257. Several analytes failed the recovery criteria high.

For the MSD of sample 460-71107-8 in batch 460-208348, 1,1,2-Trichloroethane, Bromoform, Dibromochloromethane and trans-1,3-Dichloropropene failed the recovery criteria low. Several analytes failed the recovery criteria high. Also, Chloromethane exceeded the rpd limit.

1,1,2-Trichloroethane, Bromoform, Carbon disulfide and Dibromochloromethane failed the recovery criteria low for the MS of sample 460-71107-9 in batch 460-208348. 1,1,2,2-Tetrachloroethane, 1,2-Dibromo-3-Chloropropane, Cyclohexane and Methylcyclohexane failed the recovery criteria high.

For the MSD of sample 460-71107-9 in batch 460-208431, 1,1,2-Trichloroethane and Bromoform failed the recovery criteria low. Several analytes failed the recovery criteria high. Also, 1,1,2-Trichloroethane exceeded the rpd limit.

Several analytes failed the recovery criteria low for the MS/MSD of sample 460-71165-33 in batch 460-208431. Several analytes failed the recovery criteria high.

Refer to the QC report for details.

The following sample was diluted due to the abundance of target and non-target analytes: 29-WGQ27(6.5') (460-71107-9). Elevated reporting limits (RLs) are provided.

The following sample(s) was diluted to bring the concentration of target analytes within the calibration range: 29-WGQ22(12.5') (460-71107-3), 29-WGQ24(6') (460-71107-5), 29-WGQ25(18.5') (460-71107-7), 29-WGQ25(8.5') (460-71107-6), 29-WGR26(9.0') (460-71107-16). Elevated reporting limits (RLs) are provided.

The following sample was diluted to bring the concentration of target analytes within the calibration range: 29-WGQ23(6.6') (460-71107-4). Elevated reporting limits (RLs) are provided.

The following samples were diluted to bring the concentration of target analytes within the calibration range: 29-WGQ26(6.3') (460-71107-8), 29-WGR24(9.0') (460-71107-18), 29-WGR25(6.0') (460-71107-17), 29-WGR27(6.0') (460-71107-15). Elevated reporting limits (RLs) are provided.

No other difficulties were encountered during the Volatile organics analyses.

All other quality control parameters were within the acceptance limits.

#### **VOLATILE ORGANICS**

Sample 460-71107-1 was analyzed for Volatile organics in accordance with EPA SW-846 Methods 8260C. The samples were analyzed on 02/21/2014.

The continuing calibration verification (CCV) associated with batch 208617 recovered above the upper control limit for Dichlorodifluoromethane, Bromomethane, Chloroethane, and Trichlorofluoromethane. The sample(s) associated with this CCV were non-detects for the affected analytes: therefore, the data have been reported.

The laboratory control sample duplicate (LCSD) for batch 208617 recovered outside control limits for the following analyte: Trichlorofluoromethane. This analyte was biased high in the LCSD and was not detected in the associated sample; therefore, the data have been reported.

Refer to the QC report for details.

No other difficulties were encountered during the Volatile organics analysis.

All other quality control parameters were within the acceptance limits.

#### PERCENT SOLIDS/PERCENT MOISTURE

Samples 460-71107-2 through 460-71107-18 were analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D). The samples were analyzed on 02/15/2014.

No difficulties were encountered during the %solids/moisture analyses.

All quality control parameters were within the acceptance limits.

# SAMPLE SUMMARY

Client: TRC Environmental Corporation

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
460-71107-1FB	FB021214	Water	02/12/2014 0845	02/12/2014 2000
460-71107-2	29-WGQ21(10.6')	Solid	02/12/2014 0905	02/12/2014 2000
460-71107-3	29-WGQ22(12.5')	Solid	02/12/2014 0915	02/12/2014 2000
460-71107-4	29-WGQ23(6.6')	Solid	02/12/2014 0925	02/12/2014 2000
460-71107-5	29-WGQ24(6')	Solid	02/12/2014 0930	02/12/2014 2000
460-71107-6	29-WGQ25(8.5')	Solid	02/12/2014 0945	02/12/2014 2000
460-71107-7	29-WGQ25(18.5')	Solid	02/12/2014 0950	02/12/2014 2000
460-71107-8	29-WGQ26(6.3')	Solid	02/12/2014 1025	02/12/2014 2000
460-71107-8MS	29-WGQ26(6.3')	Solid	02/12/2014 1025	02/12/2014 2000
460-71107-8MSD	29-WGQ26(6.3')	Solid	02/12/2014 1025	02/12/2014 2000
460-71107-9	29-WGQ27(6.5')	Solid	02/12/2014 1040	02/12/2014 2000
460-71107-10	29-WGQ28(1.0')	Solid	02/12/2014 1050	02/12/2014 2000
460-71107-11	29-WGQ29(6.0')	Solid	02/12/2014 1020	02/12/2014 2000
460-71107-12	29-WGR29(2.5')	Solid	02/12/2014 1140	02/12/2014 2000
460-71107-13	29-WGR29(12.5')	Solid	02/12/2014 1150	02/12/2014 2000
460-71107-14	29-WGR28(6.0')	Solid	02/12/2014 1245	02/12/2014 2000
460-71107-14MS	29-WGR28(6.0')	Solid	02/12/2014 1245	02/12/2014 2000
460-71107-14MSD	29-WGR28(6.0')	Solid	02/12/2014 1245	02/12/2014 2000
460-71107-15	29-WGR27(6.0')	Solid	02/12/2014 1300	02/12/2014 2000
460-71107-16	29-WGR26(9.0')	Solid	02/12/2014 1315	02/12/2014 2000
460-71107-17	29-WGR25(6.0')	Solid	02/12/2014 1335	02/12/2014 2000
460-71107-18	29-WGR24(9.0')	Solid	02/12/2014 1340	02/12/2014 2000

Client: TRC Environmental Corporation

TestAmerica Edison

Lab Sample ID C	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-71107-2	29-WGQ21(10.6')					
Acetone	,	24	В	4.5	ug/Kg	8260C
Benzene		0.23	J	0.90	ug/Kg	8260C
Toluene		0.14	J	0.90	ug/Kg	8260C
Ethylbenzene		8.0		0.90	ug/Kg	8260C
Xylenes, Total		12		1.8	ug/Kg	8260C
Cyclohexane		1.4		0.90	ug/Kg	8260C
Isopropylbenzene		3.4		0.90	ug/Kg	8260C
Methylcyclohexane		4.8		0.90	ug/Kg	8260C
Percent Moisture		11.9		1.0	%	Moisture
Percent Solids		88.1		1.0	%	Moisture
460-71107-3	29-WGQ22(12.5')					
Benzene		34	J .	190	ug/Kg	8260C
Ethylbenzene		10000	•	190	ug/Kg	8260C
Xylenes, Total		48000		370	ug/Kg	8260C
Cyclohexane		5100		190	ug/Kg	8260C
Isopropylbenzene		5300		190	ug/Kg	8260C
Methylcyclohexane		36000		190	ug/Kg	8260C
Percent Moisture		9.2		1.0	%	Moisture
Percent Solids		90.8		1.0	%	Moisture
460-71107-4	29-WGQ23(6.6')					
Ethylbenzene		54000		1100	ug/Kg	8260C
Xylenes, Total		260000		2300	ug/Kg	8260C
Cyclohexane		32000		1100	ug/Kg	8260C
Isopropylbenzene		23000		1100	ug/Kg	8260C
Methylcyclohexane		190000		1100	ug/Kg	8260C
Percent Moisture		13.5		1.0	%	Moisture
Percent Solids		86.5		1.0	%	Moisture
460-71107-5	29-WGQ24(6')					
Ethylbenzene		17000		500	ug/Kg	8260C
Xylenes, Total		100000		1000	ug/Kg	8260C
Cyclohexane		37000		500	ug/Kg	8260C
Isopropylbenzene		9400		500	ug/Kg	8260C
Methylcyclohexane		150000		500	ug/Kg	8260C
Percent Moisture	•	12.3		1.0	%	Moisture
Percent Solids		87.7	,	1.0	%	Moisture
T CIOCIR COIRGS		07.7		1.0	/0	พเบเจเนเษ

Client: TRC Environmental Corporation

Lab Sample ID Cli Analyte	ent Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-71107-6	29-WGQ25(8.5')					
Benzene		1000		1000	ug/Kg	8260C
Ethylbenzene		61000		1000	ug/Kg	8260C
Xylenes, Total		260000		2000	ug/Kg	8260C
Cyclohexane		120000		1000	ug/Kg	8260C
Isopropylbenzene		19000		1000	ug/Kg	8260C
Methylcyclohexane		310000		1000	ug/Kg	8260C
Percent Moisture		11.3		1.0	%	Moisture
Percent Solids		88.7		1.0	%	Moisture
460-71107-7	29-WGQ25(18.5')					
Benzene	, ,	1100		1100	ug/Kg	8260C
Toluene		350	J	1100	ug/Kg	8260C
Ethylbenzene		59000		1100	ug/Kg	8260C
Xylenes, Total		240000		2100	ug/Kg	8260C
Cyclohexane		150000		1100	ug/Kg	8260C
Isopropylbenzene		17000		1100	ug/Kg	8260C
Methylcyclohexane		310000		1100	ug/Kg	8260C
Percent Moisture		11.3		1.0	%	Moisture
Percent Solids		88.7		1.0	%	Moisture
460-71107-8	29-WGQ26(6.3')					
Benzene	25-110-02-0(0.0)	280	J	930	ug/Kg	8260C
Toluene		330	Ĵ	930	ug/Kg	8260C
Ethylbenzene		32000	•	930	ug/Kg	8260C
Xylenes, Total		130000		1900	ug/Kg	8260C
Cyclohexane		62000		930	ug/Kg	8260C
Isopropylbenzene		11000		930	ug/Kg	8260C
Methylcyclohexane		170000		930	ug/Kg	8260C
Percent Moisture		13.9		1.0	%	Moisture
Percent Solids		86.1		1.0	%	Moisture
460-71107-9	29-WGQ27(6.5')					
Ethylbenzene	=3 ( )	950		170	ug/Kg	8260C
Xylenes, Total		4800		340	ug/Kg	8260C
Cyclohexane		1700		170	ug/Kg	8260C
Isopropylbenzene		2200	•	170	ug/Kg	8260C
Methylcyclohexane		15000		170	ug/Kg	8260C
Percent Moisture		13.0		1.0	%	Moisture
Percent Solids		87.0		1.0	%	Moisture

Client: TRC Environmental Corporation

460-71107-10		Result	Qualifier	Limit	Units	Method
	29-WGQ28(1.0')					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Acetone		7.3	В	4.8	ug/Kg	8260C
Methylcyclohexane		0.32	J	0.96	ug/Kg	8260C
Percent Moisture		7.7		1.0	%	Moisture
Percent Solids	•	92.3		1.0	%	Moisture
460-71107-11	29-WGQ29(6.0')					•
Acetone		19	В	5.2	ug/Kg	8260C
Carbon disulfide		0.25	J	1.0	ug/Kg	8260C
2-Butanone		1.8	J	5.2	ug/Kg	8260C
Ethylbenzene		0.46	J	1.0	ug/Kg	8260C
Xylenes, Total		1.4	J	2.1	ug/Kg	8260C
Cyclohexane		1.5		1.0	ug/Kg	8260C
Isopropylbenzene		0.46	J ·	1.0	ug/Kg	8260C
Methylcyclohexane		4.5		1.0	ug/Kg	8260C
Percent Moisture		18.8		1.0	%	Moisture
Percent Solids		81.2		1.0	%	Moisture
460-71107-12	29-WGR29(2.5')					
Acetone	, ,	51	В	4.8	ug/Kg	8260C
Percent Moisture		12.2		1.0	%	Moisture
Percent Solids		87.8		1.0	%	Moisture
460-71107-13	29-WGR29(12.5')					
Acetone		27	В	4.8	ug/Kg	8260C
Percent Moisture		11.6		1.0	%	Moisture
Percent Solids		88.4		1.0	%	Moisture
460-71107-14	29-WGR28(6.0')					,
Acetone	23-4101(20(0.0)	39	В	4.5	ug/Kg	8260C
Carbon disulfide		0.23	J	0.90	ug/Kg ug/Kg	8260C
2-Butanone		4.4	J	4.5	ug/Kg ug/Kg	8260C
Benzene		0.20	J	0.90	ug/Kg ug/Kg	8260C
Toluene		0.24	J	0.90	ug/Kg	8260C
Ethylbenzene		1.4	Ū	0.90	ug/Kg	8260C
Xylenes, Total		5.5		1.8	ug/Kg	8260C
Cyclohexane		6.9		0.90	ug/Kg.	8260C .
Isopropylbenzene	•	0.96		0.90	ug/Kg	8260C
Methylcyclohexane		14		0.90	ug/Kg	8260C
Percent Moisture		12.2		1.0	%	Moisture
Percent Solids		87.8		1.0	%	Moisture

Client: TRC Environmental Corporation

Lab Sample ID C Analyte	lient Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-71107-15	29-WGR27(6.0')					
Benzene		340	J	380	ug/Kg	8260C
Ethylbenzene		6800		380	ug/Kg	8260C
(ylenes, Total		380	J	760	ug/Kg	8260C
Cyclohexane		26000		380	ug/Kg	8260C
sopropylbenzene		3000		380	ug/Kg	8260C
Methylcyclohexane		68000		380	ug/Kg	8260C
Percent Moisture		11.1		1.0	%	Moisture
Percent Solids		88.9		1.0	%	Moisture
160-71107-16	29-WGR26(9.0')					
Benzene	• •	13000		2000	ug/Kg	8260C
Foluene		820	J	2000	ug/Kg	8260C
Ethylbenzene		130000	•	2000	ug/Kg	8260C
(ylenes, Total		490000		4000	ug/Kg	8260C
Cyclohexane		280000		2000	ug/Kg	8260C
sopropylbenzene		35000		2000	ug/Kg	8260C
Methylcyclohexane		560000		2000	ug/Kg	8260C
Percent Moisture		11.7		1.0	%	Moisture
Percent Solids		88.3		1.0	%	Moisture
460-71107-17	29-WGR25(6.0')					
Benzene	• •	1900		370	ug/Kg	8260C
Toluene		130	J	370	ug/Kg	8260C
Ethylbenzene		16000		370	ug/Kg	8260C
(ylenes, Total		57000		740	ug/Kg	8260C
Cyclohexane		28000		370	ug/Kg	8260C
sopropylbenzene		4500		370	ug/Kg	8260C
Methylcyclohexane		50000		370	ug/Kg	8260C
Percent Moisture		13.9		. 1.0	%	Moisture
Percent Solids		86.1		1.0	%	Moisture
\$60-71107-18	29-WGR24(9.0')					
Benzene	, ,	410		340	ug/Kg	8260C
Toluene		160	J	340	ug/Kg	8260C
Ethylbenzene		17000		340	ug/Kg	8260C
(ylenes, Total		66000		670	ug/Kg	8260C
Cyclohexane	,	39000		340	ug/Kg	8260C ·
sopropylbenzene		4400		340	ug/Kg	8260C
Methylcyclohexane		96000		340	ug/Kg	8260C
Percent Moisture		11.7		1.0	%	Moisture
Percent Solids		88.3		1.0	%	Moisture

# **METHOD SUMMARY**

Client: TRC Environmental Corporation

Job Number: 460-71107-1

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
Volatile Organic Compounds by GC/MS	TAL EDI	SW846 8260C	•
Closed System Purge and Trap	TAL EDI		SW846 5035
Percent Moisture	TAL EDI	EPA Moisture	
Matrix: Water			
Volatile Organic Compounds by GC/MS	TAL EDI	SW846 8260C	
Purge and Trap	TAL EDI		SW846 5030C
Gasoline Range Organics (GRO) (GC)	TAL EDI	SW846 8015D	
Purge and Trap	TAL EDI		SW846 5030C
Diesel Range Orgnics (DRO) (GC)	TAL EDI	SW846 8015D	
Liquid-Liquid Extraction (Separatory Funnel)	TAL EDI		SW846 3510C

#### Lab References:

TAL EDI = TestAmerica Edison

## **Method References:**

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

# Shipping and Receiving Documents

777 New Durham Road Edison, New Jersey 08817

Phone: (732) 549-3900 Fax: (732) 549-3679

THE LEADER IN ENVIRONMENTAL TESTING	CHA	AIN OF	CUST	rody	/AN	ALY	SIS	REC	UES	ST				Page 1 of 2
Name (for report and invoice)  ハットリー		Sampler	s Name (	Printed (	) 1 e ~ e	L		1/2	6 که		one di		hau	at Investigation
Company		P. O. #	16	564	<i>i</i> 3			State Regu	(Loca latory	tion of si Program	te): N. : Q.A	:X 1		Other: Reduced
Address 21 Gillin Rd. North		, ,	Analysis Turnaround Time Standard  Rush Chrages Authorized For: 2 Week			ANALYSIS R			D (ENTER 7% BELOW TO INDICATE REQUEST)					LAB USE ONLY Project No:
City Whose CT State	<b>-95</b>							(315)	biner					Job No:
Phone Fax 860-305-5903	· .	1 Week Other	=		3.24.5	o	Q	\$ V. V.	السال					71107
Sample Identification	Date	Time	Matrix	No. of. Cont.	F	GRO	250	73	<u> </u>					Sample Numbers
FB021214	2/12/14		A	7	×	×	×							ſ
29-WGQ21(10.6°)	11_	0%5	25,1	4				X						2
29-WGQ22(12.5°)		0912		4				X						3
29-WG023(6K')		0925		4				X						Y
29- WGQ24 (C')		0930		4				X						उ
29- WGQ25 (8,5')		0945		4				X						i
29-WGQ25(18.5')		0950		4				X	<u> </u>					. 7.
29.WGQ26(6.3.)		1025		12				X	X			1		B
29-LGQ27(G5')	1.	1040		4			<del> </del>	ĺŹ,			-+_	٠		9
29- WGQ28(1.0')	2/12/14		50:1	4	<b>†</b>			X			- S	YORT LD	+	18
Preservation Used: $1 = ICE$ , $2 = HCI$ , $3 = H_2SC$				Soil:				1,6			148		•	
6 = Other MENY FI. 7=		3, 0 - 112	•••		1,2	1,2	T	1		-	_ , `	<b>40</b>		
Special Instructions EDDs Regard				2/FAI	4 ', N	<u>ا</u> .د								d (Yes/No)? NA
Relinquished by Compa  Want Jack T	ny RC		a/12/	ate / Time	e 105	Récei 1)	yed by	Kis,	AI	ĵ		Compar	7/2	1405
Relinquished by Compa 2)			75	ate / Time	$\mathcal{N}$	2)	velib	<u>M</u>	70		۷	90mbar	١٧	<u> </u>
Relinquished by Compa			2/10	ate / Time	e	Recei	veti by	1/0-	<u> </u>	2//	,   ] / !	Compar	•	WTA
College sighed by Congress of the 100 cm (188) [1]	THE REPORT OF THE	1111		ato / Tim		Possi	VOA by	,				Compos	\	

Laboratory Certific

Massachusetts (M-I

460-71107 Chain of Custody

452), Pennsylvania (68-522), Connectiout (PH-0200), Rhode Island (132).

TAL - 0016 (0408)

# TestAmerica

777 New Durham Road

Edison, New Jersey 08817 Phone: (732) 549-3900 Fax: (732) 549-3679

# **CHAIN OF CUSTODY / ANALYSIS REQUEST**

THE LEADER IN ENVIRONMENTAL TESTING									-					Page <u>d</u> of <u>d</u>
Name (for report and invoice)  Mwk Windows	Mak Windsurne				Nov	e۷	Site	Site/Project Identification fra 29 Removed Enhancements Involvigat						
Company TRC		P. O. #	6	5641	3					site):			NY:	Other:
Address 21 Gillard. No		Standard	Analysis Turnaround Time Standard   Standard			ANALYSIS REQUE			BELOW TO	INDICATE F	EOUEST)			LAB USE ONLY Project No:
	06095	•	Rush Chragos Authorized For: 2 Week		5935	1935 1920								Job No:
Phone 960-305-59-3		1 Wook Other	===		\$ \\ \frac{\partial}{\partial} \\ \fractantantantantantantantantantantantantant	المراكس الريم								71107
Sample Identification	Date	Time	Matrix		<u> </u>	ير								Sample Numbers
a9- weaz9(6.0°)	2/12/14	1020	20.1		X									[1
29- WGR29 (2.51)		1140		۲	X									12
29-6 GR29 (12.51)		1150		4	X									13
29-WGR28(6.9')		1245		12	X	X					-	-   -		14
29-WGR27 (6.51)		1300		4	X						- 1			18
29-WGRZC(9.01)		1315		4	×									Ř.
29- WGR25 (G.O')		1335	7/	4	×									17
29-WGR24(9.0')	2/12/14	1340	50.7	4	X									18
													*****	
Preservation Used: 1 = ICE, 2 = HCl, 3 = H	-	, 5 = NaC	ЭН	Soil:	i,G									
6 = Other Mach DI,	' = Other			Water:				<u> </u>						
	Regund: E	auls						N2	Ha	21.6	Wat	er Meta	als Filtere	ed (Yes/No)?
Relinquished by Con	TRC			ate / Time (4   ) Y		Receive 1)		M14				Cempar	3/17	1405
2)	npany			ate / Time	W_	Receive 2)	4/1			/.	•	Compar	У.	
3)	npariy	<u></u>	1/h	ate / Time	w	Receife 3)	M	! !!!	Z	<u> </u>	<u>ا د</u>	Compar	7	2/12/14
Relinquished by Con	parly		C	ate / Time	9	Receive	ed by				C	Compar	ıy	
4)				1		4)								

			TestAm	erica Edi		-	perature	and				Page _	of
ob Number:	7/10				pH Lo	_			~				
tumber of Coolers:				IR Gun# ler#4 (Deg									
emp. Cooler#1 (Deg C) (Raw/Corrected)	11.	The same	Temp. Coo	ler#4 (Deg	C) (Raw/Cor	rected)			Temp. Coc	ler#7 (Deg	C) (Raw/Co	rected)	
remp. Cooler #2 (Deg C) (Raw/Corrected)	all the later of	13 1 W W #	19 15 1 1 1 1	ler #5 (Deg )		1. 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Maria and Mentioners	1 170 77 100	That is a 10 Page	1 34 these o'c.	
Гемр. Cooler#3 (Deg C) (Raw/Corrected)	21679 12 13 13 13 13 13	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		ler #6 (Deg.		41.22 .343 .44 .55	" what the first	the Constant of the Con-		10 10 10 10 10 10	1 137 6 2713 17		
i ki i i i i i i i i i i i i i i i i i	Ammonia	COD	Nitrate Nitrite	*Metals	Pest	PHC	Phenois	Sulfide	TKN	тос	Total Cyanide	Total Phos	Other
Sample No.	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH 5-9)	(pH<2)	(pH<2)	(pH>9)	(pH<2)	(pH<2)	(pH>12)	(pH<2)	
										<u> </u>			
							,						
****													
									,				
	1												
					·								
							<del> </del>	1			<del></del>		
							<u> </u>		<u> </u>				
				ed record t		tion belov	v;						
•	Sample N	o(s). adji	ısted:	·					•				
	Preservat	ive Name	/Conc.:		<del> </del>	-		Volume	of Preserv	ative used			· · · · · · · · · · · · · · · · · · ·
	Lot # of P	veservati	ve:	rtment Man	anor about	e I ha nottiid	ad about the		on Date: which were	oH adjusts			
	* Sample:	s for Meta	Hanalysis I	which are or	it of complie	ance must	be acidified	d at least 2	4 hours pri	or o analys	sis.		
EDS-WI-038, Rev 3, 10/8/12	initialas		Y	$v \sim$				Date:	7/17	/\v	\		

# **Login Sample Receipt Checklist**

Answer

True

True

True

True

N/A

Comment

Client: TRC Environmental Corporation

There is sufficient vol. for all requested analyses, incl. any requested

Containers requiring zero headspace have no headspace or bubble is

Job Number: 460-71107-1

List Source: TestAmerica Edison

Login Number: 71107

List Number: 1

Question

Creator: Meyers, Gary

	,	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	Not present
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.1 ° C IR #4
COC is present.	True	
COC is filled out in ink and legible.	True	•
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
ntainers are not broken or leaking.	True	•
sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	

<6mm (1/4").

Multiphasic samples are not present.

Residual Chlorine Checked.

Samples do not require splitting or compositing.

No analysis requiring residual chlorine check

assigned.



# **ANALYTICAL REPORT**

Job Number: 460-71114-1

Job Description: Area 29 Remedial Enhancement Investigati

For:

TRC Environmental Corporation 21 Griffin Road North Windsor, CT 06095

Attention: Mr. Mark Winbourne

Approved for release.

Manager of Project Management Assistants 2/26/2014 2:49 PM

Designee for

Melissa Haas, Project Manager I 777 New Durham Road, Edison, NJ, 08817

(203)944-1310

melissa.haas@testamericainc.com 02/26/2014

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Edison Project Manager.

TestAmerica Edison Certifications and Approvals: Connecticut: CTDOH #PH-0200, New Jersey: NJDEP (NELAP) #12028, New York: NYDOH (NELAP) #11452, NYDOH (ELAP) #11452, Pennsylvania: PADEP (NELAP) 68-00522 and Rhode Island: RIDOH LAO00132



# **Table of Contents**

Cover Title Page	1
Data Summaries	4
Report Narrative	4
Sample Summary	7
Executive Summary	8
Method Summary	15
Method / Analyst Summary	16
Sample Datasheets	17
Data Qualifiers	106
Lab Chronicle	107
Certification Summary	116
Organic Sample Data	117
GC/MS VOA	117
8260C	117
8260C QC Summary	118
8260C Sample Data	205
Standards Data	330
8260C ICAL Data	330
8260C CCAL Data	372
Raw QC Data	404
8260C Blank Data	404
8260C LCS/LCSD Data	440
8260C MS/MSD Data	532
8260C Run Logs	548
8260C Prep Data	
Inorganic Sample Data	560 565
HIVIUGUIC SAUDIC LAIA	:005

# **Table of Contents**

General Chemistry Data	565
Gen Chem Cover Page	566
Gen Chem MDL	567
Gen Chem Analysis Run Log	569
Shipping and Receiving Documents	572
Client Chain of Custody	573
Sample Receipt Checklist	577

# **CASE NARRATIVE**

**Client: TRC Environmental Corporation** 

Project: Area 29 Remedial Enhancement Investigati

Report Number: 460-71114-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### RECEIPT

The samples were received on 2/12/2014 8:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 1.1° C and 1.1° C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process as begun, such as arrival on ice, etc.

#### **VOLATILE ORGANICS**

Samples 460-71114-2 through 460-71114-30 were analyzed for Volatile organics in accordance with EPA SW-846 Methods 8260C. The samples were prepared on 02/14/2014 and 02/17/2014 and analyzed on 02/19/2014, 02/20/2014, 02/21/2014, 02/22/2014 and 02/24/2014

Acetone was detected in method blank MB 460-208752/7 at a level exceeding the reporting limit. If the associated sample reported a result above the MDL and/or RL, the result has been "B" flagged. Acetone was detected in method blank MB 460-208908/7 at a level exceeding the reporting limit. If the associated sample reported a result above the MDL and/or RL, the result has been "B" flagged.

The continuing calibration verification (CCV) associated with batch 208431 recovered outside control limits for Dichlorodifluoromethane, Bromomethane, Trichlorofluoromethane, and Bromoform. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

The continuing calibration verification (CCV) associated with batch 208274 recovered outside control limits for 1,1,1-Trichloroethane, Acetone, Bromoform, Carbon tetrachloride, Chlorodibromomethane, and Trichloroethene. The samples associated with this CCV were non-detects for the affected analytes. The data has been qualified and reported.

The laboratory control sample (LCS) for batch 208274 recovered outside control limits for the following analyte: Bromoform. This analyte was not detected in the associated samples. The data has been flagged and reported.

The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for batch 208589 recovered outside control limits for the following analyte: Carbon disulfide. The LCSD recoveries were also outside control limits for 1,4-Dioxane and Methylene chloride. These analytes were biased high and were not detected in the associated sample(s); therefore, the data have been reported.

The continuing calibration verification (CCV) associated with batch 208589 recovered outside control limits for 1,4-Dioxane, Bromoform, Methyl acetate, Methylene chloride, Methyl tert-butyl ether, and Vinyl chloride. These analytes were not detected in the associated sample(s). The data has been qualified and reported.

The continuing calibration verification (CCV) associated with batch 208776 recovered outside control limits for 1,4-Dioxane, Acetone, Bromoform, Bromomethane, Chlorodibromomethane, Chloroethane, Dichlorodifluoromethane, and Vinyl chloride. The samples sociated with this CCV were non-detects for the affected analytes. The data has been qualified and reported.

The laboratory control sample / laboratory control sample duplicate (LCS/LCSD) %RPD for batch 208776 recovered outside control limits for the following analyte: Acetone. The LCSD recovered outside control limits for the following analytes: Chloroethane and 1,4-Dioxane.

These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

The continuing calibration verification (CCV) associated with batch 208371 recovered outside control limits for 2-Butanone, Bromoform, Bromomethane, Dichlorodifluoromethane, Methyl acetate, and Methyl tert-butyl ether. The samples associated with this CCV were non-detects for the affected analytes. The data has been qualified and reported.

The laboratory control sample (LCS) for batch 208371 recovered outside control limits for the following analytes: Bromoform and Chlorodibromomethane. These analytes were not detected in the associated samples. The data has been flagged and reported.

Surrogate Dibromofluoromethane recovery for the following sample was outside control limits: 29-EGF17(6') (460-71114-30). Surrogate recoveries for the other three system monitoring compounds were within control limits; therefore, re-analysis was not performed.

Surrogate Dibromofluoromethane recovery for the following sample was outside control limits: 29-EGH12(2.5') (460-71114-7). Surrogate recoveries for the other three system monitoring compounds were within control limits; therefore, re-analysis was not performed.

1,1,2-Trichloroethane, Bromoform, Carbon disulfide and Dibromochloromethane failed the recovery criteria low for the MS of sample 460-71107-9 in batch 460-208348. 1,1,2,2-Tetrachloroethane, 1,2-Dibromo-3-Chloropropane, Cyclohexane and Methylcyclohexane failed the recovery criteria high.

For the MSD of sample 460-71107-9 in batch 460-208274, 1,1,2-Trichloroethane and Bromoform failed the recovery criteria low. Several analytes failed the recovery criteria high. Also, 1,1,2-Trichloroethane exceeded the rpd limit.

Bromoform, Bromomethane, Dibromochloromethane and Methylcyclohexane failed the recovery criteria low for the MS of sample 460-71114-12 in batch 460-208274. Several analytes failed the recovery criteria high.

Several analytes failed the recovery criteria low for the MSD of sample 460-71114-12 in batch 460-208431. Several analytes exceeded the rpd limit.

Several analytes failed the recovery criteria low for the MS of sample 460-71165-33 in batch 460-208431. Several analytes failed the recovery criteria high.

Several analytes failed the recovery criteria low for the MSD of sample 460-71165-33 in batch 460-208371. 1,1,2,2-Tetrachloroethane, 1,2-Dibromo-3-Chloropropane and Methyl acetate failed the recovery criteria high.

Bromoform, Bromomethane and Dibromochloromethane failed the recovery criteria low for the MS of sample 460-71278-1 in batch 460-208371. Methylene Chloride and trans-1,2-Dichloroethene failed the recovery criteria high.

For the MSD of sample 460-71278-1 in batch 460-208371, Bromoform, Bromomethane and Dibromochloromethane failed the recovery criteria low. 4-Methyl-2-pentanone and Benzene failed the recovery criteria high. Also, Dichlorodiffuoromethane and Freon TF exceeded the rpd limit.

Refer to the QC report for details.

The following samples were diluted to bring the concentration of target analytes within the calibration range: 29-EGF16(6') (460-71114-29), 29-EGF17(6') (460-71114-30), 29-EGG12(6') (460-71114-22), 29-EGG16(3') (460-71114-18), 29-EGH15(2') (460-71114-14), 29-EGH16(6') (460-71114-15), 29-EGH17(4.5') (460-71114-16). Elevated reporting limits (RLs) are provided.

The following samples were diluted to bring the concentration of target analytes within the calibration range: 29-EGG13(6.5') (460-71114-21), 29-EGG14(6') (460-71114-20), 29-EGG17(9') (460-71114-17). Elevated reporting limits (RLs) are provided.

The following sample(s) was diluted due to the abundance of non-target analytes: 29-EGF15(1.5') (460-71114-28). Elevated reporting limits (RLs) are provided.

The following sample(s) was diluted to bring the concentration of target analytes within the calibration range: 29-EGF13(6.5') (460-71114-26). Elevated reporting limits (RLs) are provided.

The following sample was diluted due to the abundance of non-target analytes: 29-EGI11(6') (460-71114-10). Elevated reporting limits (RLs) are provided.

The following samples were diluted to bring the concentration of target analytes within the calibration range: 29-EGH13(3') (460-71114-12), 29-EGI17(17.5') (460-71114-3). Elevated reporting limits (RLs) are provided.

The following samples were diluted to bring the concentration of target analytes within the calibration range: 29-EGF12(1.5') (460-71114-25), 29-EGF14(8') (460-71114-27). Elevated reporting limits (RLs) are provided.

The following samples were diluted to bring the concentration of target analytes within the calibration range: 29-EGH12(2.5') (460-71114-7), 29-EGH14(6') (460-71114-13), 29-EGI15(3') (460-71114-4). Elevated reporting limits (RLs) are provided.

No other difficulties were encountered during the Volatile organics analyses.

other quality control parameters were within the acceptance limits.

#### **VOLATILE ORGANICS**

Sample 460-71114-1 was analyzed for Volatile organics in accordance with EPA SW-846 Methods 8260C. The samples were analyzed on 02/21/2014.

The continuing calibration verification (CCV) associated with batch 208617 recovered above the upper control limit for Dichlorodifluoromethane, Bromomethane, Chloroethane, and Trichlorofluoromethane. The sample(s) associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

The laboratory control sample duplicate (LCSD) for batch 208617 recovered outside control limits for the following analyte: Trichlorofluoromethane. This analyte was biased high in the LCSD and was not detected in the associated sample; therefore, the data have been reported.

Refer to the QC report for details.

No other difficulties were encountered during the Volatile organics analysis.,

All other quality control parameters were within the acceptance limits.

#### PERCENT SOLIDS/PERCENT MOISTURE

Samples 460-71114-2 through 460-71114-30 were analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D). The samples were analyzed on 02/15/2014.

No difficulties were encountered during the %solids/moisture analyses.

All quality control parameters were within the acceptance limits.

# SAMPLE SUMMARY

Client: TRC Environmental Corporation

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
460-71114-1FB	FB021114	Water	02/11/2014 0900	02/12/2014 2000
460-71114-2	29-EGI16	Solid	02/11/2014 0930	02/12/2014 2000
460-71114-3	29-EGI17(17.5')	Solid	02/11/2014 0945	02/12/2014 2000
460-71114-4	29-EGI15(3')	Solid	02/11/2014 0955	02/12/2014 2000
460-71114-5	29-EGI14(9.6')	Solid	02/11/2014 1100	02/12/2014 2000
460-71114-6	29-EGI14(19.6')	Solid	02/11/2014 1110	02/12/2014 2000
460-71114-7	29-EGH12(2.5')	Solid	02/11/2014 1140	02/12/2014 2000
460-71114-8	29-EGI13(13')	Solid	02/11/2014 1145	02/12/2014 2000
460-71114-9	29-EGI12(2.5')	Solid	02/11/2014 1200	02/12/2014 2000
460-71114-10	29-EGI11(6')	Solid	02/11/2014 1220	02/12/2014 2000
460-71114-11	29-EGH11(8')	Solid	02/11/2014 1330	02/12/2014 2000
460-71114-12	29-EGH13(3')	Solid	02/11/2014 1340	02/12/2014 2000
460-71114-12MS	29-EGH13(3')	Solid	02/11/2014 1340	02/12/2014 2000
460-71114-12MSD	29-EGH13(3')	Solid	02/11/2014 1340	02/12/2014 2000
460-71114-13	29-EGH14(6')	Solid	02/11/2014 1400	02/12/2014 2000
460-71114-14	29-EGH15(2')	Solid	02/11/2014 1500	02/12/2014 2000
460-71114-15	29-EGH16(6')	Solid	02/11/2014 1515	02/12/2014 2000
460-71114-16	29-EGH17(4.5')	Solid	02/11/2014 1540	02/12/2014 2000
460-71114-17	29-EGG17(9')	Solid	02/11/2014 1555	02/12/2014 2000
460-71114-18	29-EGG16(3')	Solid	02/11/2014 1610	02/12/2014 2000
460-71114-19	29-EGG14(6')	Solid	02/11/2014 1620	02/12/2014 2000
460-71114-20	29-EGG15(6')	Solid	02/11/2014 1625	02/12/2014 2000
460-71114-21	29-EGG13(6.5')	Solid	02/11/2014 1640	02/12/2014 2000
460-71114-22	29-EGG12(6')	Solid	02/11/2014 1710	02/12/2014 2000
460-71114-23	29-EGG11(1.5')	Solid	02/11/2014 1810	02/12/2014 2000
460-71114-24	29-EGF11(0.16')	Solid	02/11/2014 1825	02/12/2014 2000
460-71114-25	29-EGF12(1.5')	Solid	02/11/2014 1835	02/12/2014 2000
460-71114-26	29-EGF13(6.5')	Solid	02/11/2014 1850	02/12/2014 2000
460-71114-27	29-EGF14(8')	Solid	02/11/2014 1905	02/12/2014 2000
460-71114-28	29-EGF15(1.5')	Solid	02/11/2014 1920	02/12/2014 2000
460-71114-29	29-EGF16(6')	Solid	02/11/2014 1930	02/12/2014 2000
460-71114-30	29-EGF17(6')	Solid	02/11/2014 1940	02/12/2014 2000

Client: TRC Environmental Corporation

Lab Sample ID Cli Analyte	ient Sample ID	Result	Qualifier	Reporting Limit	Units	Method	
460-71114-2	29-EGI16						
Acetone		42		4.2	ug/Kg	8260C	
2-Butanone		3.8	J	4.2	ug/Kg	8260C	
Benzene		0.47	J	0.84	ug/Kg	8260C	
Ethylbenzene		7.6		0.84	ug/Kg	8260C	
Xylenes, Total		0.74	j	1.7	ug/Kg 、	8260C	
Cyclohexane		3.6		0.84	ug/Kg	8260C	
Isopropylbenzene		3.3		0.84	ug/Kg	8260C	
Methylcyclohexane		3.6		0.84	ug/Kg	8260C	
Percent Moisture		8.1	1	1.0	%	Moisture	
Percent Solids		91.9		1.0	%	Moisture	
	•		•			•	
460-71114-3	29-EGI17(17.5')						
Benzene		31	J	62 .	ug/Kg	8260C	
Cyclohexane		130	•	62	ug/Kg	8260C	
Isopropylbenzene		91		62	ug/Kg	8260C	
Methylcyclohexane		600		62	ug/Kg	8260C	
Percent Moisture	•	14.2		1.0	%	Moisture	
Percent Solids		85.8	· · · · · · · · · · · · · · · · · · ·	1.0	%	Moisture	
460-71114-4	29-EGI15(3')			•			
1,1,1-Trichloroethane		240	J	460	ug/Kg	8260C	
Benzene		230	j	460	ug/Kg	8260C	
1,1,2,2-Tetrachloroetha	ine	1500	J	460	ug/Kg	8260C	
Ethylbenzene		14000		460	ug/Kg	8260C	
Xylenes, Total		26000		910	ug/Kg	8260C	
Cyclohexane		22000		460	ug/Kg	8260C	
Isopropylbenzene		10000		460	ug/Kg	8260C	
Methylcyclohexane		130000		460	ug/Kg	8260C	
Percent Moisture		19.7		1.0	www.	Moisture	
Percent Moisture Percent Solids		80.3	4	1.0	%	Moisture	,
		·	•				
460-71114-5	29-EGI14(9.6')		4				
Acetone		18	В	5.0	ug/Kg	8260C	
Carbon disulfide		0.15	J	1.0	ug/Kg	8260C	
Benzene		1.0		1.0	ug/Kg	8260C	
Toluene		0.32	J	1.0	ug/Kg	8260C	
Cyclohexane		61		1.0	ug/Kg	8260C	
Isopropylbenzene		17		1.0	ug/Kg	8260C	
Methylcyclohexane		58		1.0	ug/Kg	8260C	
Percent Moisture		17.1		1.0	%	Moisture	
Percent Moisture							

Client: TRC Environmental Corporation

Lab Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-71114-6 29-EGI14(19.6	"	,	,		
Acetone	20		4.4	ug/Kg	8260C
Carbon disulfide	0.22	· J	0.88	ug/Kg	8260C
Benzene	. 0.90		0.88	ug/Kg	8260C
Cyclohexane	47		0.88	ug/Kg	8260C
Isopropylbenzene	· 11		0.88	ug/Kg	8260C
Methylcyclohexane	46		0.88	ug/Kg	8260C
Percent Moisture	15.5		1.0	%	Moisture
Percent Solids	84.5		1.0	%	Moisture
460-71114-7 29-EGH12(2.5'	· ')				
1,1,1-Trichloroethane	54	J.	94	ug/Kg	8260C
1,1,2,2-Tetrachloroethane	960		94	ug/Kg	8260C
Ethylbenzene	1500		94	ug/Kg	8260C
Xylenes, Total	5700		190	ug/Kg	8260C
Cyclohexane	4500		94	ug/Kg	8260C
Isopropylbenzene	2700		94	ug/Kg	8260C
Methylcyclohexane	34000		94	ug/Kg	8260C
Percent Moisture	15.2	1	1.0	%	Moisture
Percent Solids	84.8	l.	1.0	%	Moisture
460-71114-8 29-EGI13(13')				•	
Acetone	41	В	4.6	ug/Kg	8260C
Carbon disulfide	0.73	J	0.91	ug/Kg	8260C
2-Butanone	3.1	J	4.6	ug/Kg	8260C
Benzene	3.9		0.91	ug/Kg	8260C
Toluene	0.42	J	0.91	ug/Kg	8260C
Ethylbenzene	0.80	J	0.91	ug/Kg	8260C
Cyclohexane	50		0.91	ug/Kg	8260C
isopropylbenzene	13		0.91	ug/Kg	8260C
Methylcyclohexane	110		0.91	ug/Kg	8260C
Percent Moisture	16.4		1.0	%	Moisture
Percent Solids	83.6		1.0	%	Moisture

Client: TRC Environmental Corporation

Lab Sample ID Cli Analyte	ient Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-71114-9	29-EGI12(2.5')		****			
Acetone		38	В,	4.1	ug/Kg	8260C
Carbon disulfide		0.21	J	0.82	ug/Kg	8260C
2-Butanone		3.4	J ·	4.1	ug/Kg	8260C
Benzene		0.35	J	0.82	ug/Kg	8260C
Cyclohexane		4.4		0.82	ug/Kg	8260C
Isopropylbenzene		2.6		0.82	ug/Kg	8260C
Methylcyclohexane		5.3		0.82	ug/Kg	8260C
Percent Moisture		12.7		1.0	%	Moisture
Percent Solids		87.3		1.0	%	Moisture
460-71114-10	29-EGI11(6')					
Ethylbenzene		38	j	85	ug/Kg	8260C
Cyclohexane		89		85	ug/Kg	8260C
Isopropylbenzene		120	*	85	ug/Kg	8260C
Methylcyclohexane		170		85	ug/Kg	8260C
Percent Moisture		13.1		1.0	%	Moisture
Percent Solids		86.9		1.0	%	Moisture
460-71114-11	29-EGH11(8')		•			
Acetone		46	В	4.4	ug/Kg	8260C
Carbon disulfide		0.43	J	0.88	ug/Kg	8260C
2-Butanone		2.9	J	4.4	ug/Kg	8260C
Cyclohexane		0.26	J	0.88	ug/Kg	8260C
Methylcyclohexane		0.31	J	0.88	ug/Kg	8260C
Percent Moisture		15.7		1.0	%	Moisture
Percent Solids		84.3		1.0	%	Moisture
460-71114-12	29-EGH13(3')					
Cyclohexane		4800		87	ug/Kg	8260C
Isopropylbenzene		480		87	ug/Kg ug/Kg	8260C 8260C
Methylcyclohexane		15000		87	ug/Kg	8260C
Percent Moisture		13.9		1.0	wyrty %	Moisture
Percent Solids		86.1		1.0	%	Moisture
·		00.1		1.0	70	Moistule
460-71114-13	29-EGH14(6')					
Cyclohexane		5600	•	120	ug/Kg	8260C
Isopropylbenzene		1300	•	120	ug/Kg	8260C
Methylcyclohexane		22000		120	ug/Kg	8260C
Percent Moisture		19.4		1.0	%	Moisture
Percent Solids		80.6		1.0	%	Moisture

Client: TRC Environmental Corporation

Lab Sample ID Cl Analyte	lient Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-71114-14	29-EGH15(2')					
Ethylbenzene		550		210	ug/Kg	8260C
Xylenes, Total		240	J	410	ug/Kg	8260C
Cyclohexane		23000		210	ug/Kg	8260C
Isopropylbenzene		660		210	ug/Kg	8260C
Methylcyclohexane		52000		210	ug/Kg	8260C
Percent Moisture		13.5	•	1.0	%	Moisture
Percent Solids		86.5		1.0	%	Moisture
460-71114-15	29-EGH16(6')					
Benzene		500	J	1000	ug/Kg	8260C
Ethylbenzene		5300		1000	ug/Kg	8260C
Cyclohexane		73000		1000	ug/Kg	8260C
Isopropyibenzene		18000		1000	ug/Kg	8260C
Methylcyclohexane		300000		1000	ug/Kg	8260C
Percent Moisture		16.8		1.0	%	Moisture
Percent Solids		83.2		1.0	%	Moisture
460-71114-16	29-EGH17(4.5')					
Benzene	,	810		180	ug/Kg	8260C
Ethylbenzene		150	J	180	ug/Kg	8260C
Xylenes, Total		77	J	350	ug/Kg	8260C
Cyclohexane		16000		180	ug/Kg	8260C
Isopropylbenzene		3100		180	ug/Kg	8260C
Methylcyclohexane		49000		180	ug/Kg	8260C
Percent Moisture		12.2		1.0	%	Moisture
Percent Solids		87.8		1.0	%	Moisture
460-71114-17	29-EGG17(9')					
Benzene	,	700		390	ug/Kg	8260C
Ethylbenzene		15000		390	ug/Kg	8260C
Xylenes, Total		510	J	770	ug/Kg	8260C
Cyclohexane		27000		390	ug/Kg	8260C
Isopropylbenzene		7600		390	ug/Kg	8260C
Methylcyclohexane		140000		390	ug/Kg	8260C
Percent Moisture		9.1		1.0	%	Moisture
Percent Solids		90.9		1.0	%	Moisture

Client: TRC Environmental Corporation

Lab Sample ID C	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-71114-18	29-EGG16(3')					
Benzene		92		80	ug/Kg	8260C
Ethylbenzene		440		80	ug/Kg	8260C
Xylenes, Total		49	J	160	ug/Kg	8260C
Cyclohexane		2300		80	ug/Kg	8260C
Isopropylbenzene		250		80	ug/Kg	8260C
Methylcyclohexane		7100		80	ug/Kg	8260C
Percent Moisture		8.4		1.0	%	Moisture
Percent Solids		91.6		1.0	%	Moisture
460-71114-19	29-EGG14(6')					
Ethylbenzene	` '	740	J	900	ug/Kg	8260C
Cyclohexane		47000		900	ug/Kg	8260C
Isopropylbenzene		6100		900	ug/Kg	8260C
Methylcyclohexane		170000		900	ug/Kg	8260C
Percent Moisture	•	12.6		1.0	%	Moisture
Percent Solids		87.4		1.0	%	Moisture
460-71114-20	29-EGG15(6')	14000		960	ualVa	92600
Ethylbenzene -		14000 9800		860 1700	ug/Kg	8260C 8260C
Xylenes, Total		54000 54000		860	ug/Kg	8260C
Cyclohexane		10000	•		ug/Kg	
Isopropylbenzene				860	ug/Kg	8260C
Methylcyclohexane Percent Moisture		210000		860 1.0	ug/Kg %	8260C Moisture
		13.9		1.0	%	
Percent Solids		86.1		1.0	<b>%</b>	Moisture
460-71114-21	29-EGG13(6.5')					
Ethylbenzene	,	18000		1100	ug/Kg	8260C
Xylenes, Total		2000	J	2200	ug/Kg	8260C
Cyclohexane		53000	-	1100	ug/Kg	8260C
Isopropylbenzene		13000		1100	ug/Kg	8260C
Methylcyclohexane		240000		1100	ug/Kg	8260C
Percent Moisture		15.5		1.0	%	Moisture
Percent Solids		84.5		1.0	%	Moisture

Client: TRC Environmental Corporation

Lab Sample ID Cl Analyte	lient Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-71114-22	29-EGG12(6')					
Ethylbenzene		2300		95	ug/Kg	8260C
Xylenes, Total		1800		190	ug/Kg	8260C
Cyclohexane		3300		95	ug/Kg	8260C
Isopropylbenzene		990		95	ug/Kg	8260C
Methylcyclohexane		15000		95	ug/Kg	8260C
Percent Moisture		13.8		1.0	%	Moisture
Percent Solids		86.2		1.0	%	Moisture
460-71114-23	29-EGG11(1.5')					
Acetone		14	В	5.3	ug/Kg	8260C
Toluene		0.17	J	1.1	ug/Kg	8260C
Ethylbenzene		0.27	J	1.1	ug/Kg	8260C
Cyclohexane		0.70	·J	1.1	ug/Kg	8260C
Methylcyclohexane		2.9		1.1	ug/Kg	8260C
Percent Moisture		7.9		1.0	%	Moisture
Percent Solids		92.1		1.0	%	Moisture
460-71114-24	29-EGF11(0.16')			`		
Acetone		13	В	4.3	ug/Kg	8260C
2-Butanone		1.3	J	4.3	ug/Kg	8260C
Cyclohexane		0.58	j	0.86	ug/Kg	8260C
Methyl acetate		3.3	J	4.3	ug/Kg	8260C
Methylcyclohexane		1.7		0.86	ug/Kg	8260C
Percent Moisture		8.8		1.0	%	Moisture
Percent Solids		91.2		1.0	%	Moisture
460-71114-25	29-EGF12(1.5')					
Ethylbenzene		3300		340	ug/Kg	8260C
Xylenes, Total		460	J	680	ug/Kg	8260C
Isopropylbenzene		2400		340	ug/Kg	8260C
Methylcyclohexane		88000		340	ug/Kg	8260C
Percent Moisture		12.3		1.0	%	Moisture
Percent Solids		87.7		1.0	%	Moisture
460-71114-26	29-EGF13(6.5')				·	
Ethylbenzene	, ,	7600		440	ug/Kg	8260C
Cyclohexane		54000		440	ug/Kg	8260C
Isopropylbenzene		4600		440	ug/Kg	8260C
Methylcyclohexane		180000		440	ug/Kg	8260C
Percent Moisture		14.0		1.0	%	Moisture
Percent Solids		86.0		1.0	%	Moisture

Client: TRC Environmental Corporation

Lab Sample ID C Analyte	lient Sample ID	Result	Qualifier	Reporting Limit,	Units	Method
460-71114-27	29-EGF14(8')					
Benzene		220:	<b>J</b>	970	ug/Kg	8260C
Ethylbenzene		1600		970	ug/Kg	8260C
Cyclohexane		84000		970	ug/Kg	8260C
Isopropylbenzene	•	18000		970	ug/Kg	8260C
Methylcyclohexane		330000		970	ug/Kg	8260C
Percent Moisture		8.1		1.0	%	Moisture
Percent Solids		91.9		1.0	%	Moisture
460-71114-28	29-EGF15(1.5')			-4 -		
Ethylbenzene		12	J	84	ug/Kg	8260C
Xylenes, Total		31	J	170	ug/Kg	8260C
Isopropylbenzene		18	J	84	ug/Kg	8260C
Methylcyclohexane		240		84	ug/Kg	8260C
Percent Moisture		11.8		1.0	%	Moisture
Percent Solids		88.2		1.0	%	Moisture
			;			
460-71114-29	29-EGF16(6')					
Benzene	•	260		85	ug/Kg	8260C
Ethylbenzene	,	5100	•	85	ug/Kg	8260C
Cyclohexane		12000		85	ug/Kg	8260C
Isopropylbenzene		1600		85	ug/Kg	8260C
Methylcyclohexane	•	41000		85	ug/Kg	8260C
Percent Moisture		12.0		1.0	%	Moisture
Percent Solids		88.0	1	1.0	%	Moisture
,						
460-71114-30	29-EGF17(6')					
Benzene		380	•	180	ug/Kg	8260C
Ethylbenzene		10000		180	ug/Kg	8260C
Cyclohexane		11000		180	ug/Kg	8260C
Isopropylbenzene		5000	٠.	180	ug/Kg	8260C
Methylcyclohexane		61000		180	ug/Kg	8260C
Percent Moisture		11.3		1.0	%	Moisture
Percent Solids		88.7		1.0	%	Moisture

# **METHOD SUMMARY**

Client: TRC Environmental Corporation

Job Number: 460-71114-1

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
Volatile Organic Compounds by GC/MS	TAL EDI	SW846 8260C	
Closed System Purge and Trap	TAL EDI		SW846 5035
Percent Moisture	TAL EDI	EPA Moisture	
Matrix: Water			
Volatile Organic Compounds by GC/MS	TAL EDI	SW846 8260C	
Purge and Trap	TAL EDI		SW846 5030C

## Lab References:

TAL EDI = TestAmerica Edison

## **Method References:**

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

# Shipping and Receiving Documents

777 New Durham Road Edison, New Jersey 08817 Phone: (732) 549-3900 Fax: (732) 549-3679

# **TestAmerica**



THE LEADER IN ENVIRONMENTAL TESTING	CHA	III OF											Page _	1 of 3
Name (for report and invoice)  Mak いたらった。		Sampler	s Name (	Printed) 代。 「	Java	3 in	s	Site/Project Identification Ana 29 Remedial Enhancement Investigate						ime traction
Company		P. O. #		· · · · · · · · · · · · · · · · · · ·			State (Location of site): NJ:						Other:	
TRC			G	5643	3						Radina	JOA	Level	
Address 21 Grillon Rd. N.	<del></del>	Analysis T	umaround 1		ANALYS	S REQUEST	DUESTED (ENTER 1% BELOW TO INDICATE REQUEST)						AB USE ONLY Project No:	
		-	ges Authonz	ed For		.							i i	,
WW04 37 C1 06	-95	2 Week			\$\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	`							Job No:
Phone 960- 305-5903		1 Week Othor			ؿٙڒ ڟۜڒ	25.55 25.55	.						-	<del>                                      </del>
Sample Identification	Date	Time	Matrix	No. of. Cont.	7	12 % (B) (1)	,							Sample Numbers
	Billia	Gara	Aq	3	X									
29-EGI16.	1	0930	Soil	4		X							-2	
29- EGI17 (17.5')		0945		4		X							-3	
29- EGI(5 (31)		0955		4		X							-4	
29-EGI14 (9.6')		C611		4		×							-5	
29-EGI14 (17.6')		1110		4		X							-6	
29-ECH12 (2,5')		1140		4		×			_	A			17	
29- EGI3 (13')		1145		ij		X			-	G.	οL		-8	
29-EGI17 (8.2.)	Ą	1200	V	4		X			×	8	<b>/</b> *		-0	
29-ECII(C1)	2/11/14	1220	Soil	4		X				4.00			- 10	>
Preservation Used: 1 = ICE, 2 = HCl, 3 = H ₂ SO ₄						G,7				<b> </b>				
6 = Other <u>Frozer</u> , 7 = 0	other Mea	H\DI	•	Water:	<del></del> _	6,7	<del></del>							
Special Instructions EDD: Regun	ed; N.	5 Hon	بعا بهر	EQ.	ع کار	FAR	2/8	AA.	TRO	ر - د	T Wate	er Metals F	iltered (Yes/I	NO)? NA
Relinquished by Compar	ıy		, Di	ate / Tim	e		ved by	6. 1	7,					
Manh Com TR	, C	(	2/12/1	4116	105	1)	₹\^_\ <u>^</u>	011	THE Y		ifi	Jil:	j 14	
Relinquished by Compar	ıy	^	ار از	ate / Tim	m. 1	Recei	vedby	N	00		0	ompan	J	į
2) PORTAL F		57	10	1 1	5 <u>XV</u>	2)	4	Щ						
Relinquished by Compar	1	<b>/</b> .	2/12	ate / Tirh	للره	Reser	redby	222	2	121	114	ompany 200	0 -	74
Relinquished by Compar	ту		D.	ate / Tim	ө	Recer	ved by		Τ,	j	C	ompany		
4)						4)			111	/			7.45	
Laboratory Certifications: New Jersey (1202		York (11	1452), F	ennsylv' صح	/ania (	68-522 ' , <i>iレ</i>	2), Cor <b>1</b> /	nnectić / /	υτ (PH•	·U200). */	Rhod	e isiand ( )	132).	TAL - 0016 (0408)
Massachusetts (M-NJ312), North Carolina (I	No. 578)			•	V K	P	7.	//	11	ı		•		1

# <u>TestAmerica</u>

777 New Durham Road Edison, New Jersey 08817 Phone: (732) 549-3900 Fax: (732) 549-3679

CHAIN OF CUSTODY / ANALYSIS REQUEST

THE LEADER IN ENVIRONMENTAL TESTING		0001	ODI	/ ///	~LI	no ni	.QUL	<b>J</b> 1				Page <u>2</u> of <u>3</u>	
Name (for report and invoice)	Samplers	Name /				Site	e/Projec	l Identi	fication		~ 1	1	
Mark Wasoru		/	R.	New			rea	29	Ren	سا زما	Pah-	ment protigh	
Company TR<	P. O. #	656	:07		State (Location of site): NJ: XX  Regulatory Program: QA Le					<u>n: 🔀</u>	NY:	Other:	
				<del></del>							~, N2		
Address 21 Grillin Rd. N.	· · ·	Analysis Turnaround Time Standard				REQUESTED	ENTER %	BELOW TO	INDICATE REC	UEST)		LAB USE ONLY Project No:	
City Whin CT State 06095	Rush Chrac	ges Authoriza	ed For:	505	ideo							Job No:	
Phone 840-305-5x403	1 Woek Other		***************************************	>2	MSD Provided							71114	
Sample Identification Date	Time	Matrix	No. of. Cont.	T.CL (826	A S /							Sample Numbers	
29-EGH11(8')  2/11/	14 1330	Soil	4	X						<u> </u>			
29-EGH13/3')	1340	Soil	12	Х	X							_\2	
29-EGH14767	1400	Soil	4	X			`					~\3	
29-EGH15(2')	1500		4	X								-14	
29- EGH 16/6)	1515		ij	X								1,<	
29- EGH 17 (45)	1540		4	X						= -		-16	
29- FGG17 (9')	1555	-	24	X			_			_	<del>                                     </del>	17	
29- FGG16 (3')	1610	50:1	4	Ý						_		Fis	
29- EGG14 (6')	1620	2011 2011	11	X						-	<del>                                     </del>	-19	
29- EGG15/6')	11025		4	Ý								_20	
Preservation Used: 1 = ICE, 2 = HCl, 3 = H ₂ SO ₄ , 4 = Hl				6,7		-					<del> </del>		
6 = Other Frozen, 7 = Other M			Water:	0, 1							<del>  </del>		
Special Instructions EDD, Required:	らん いい						te; T	RC.	·CT	Water N	letals Filter	ed (Yes/No)?	
Relinguished by Company RC		शायीं	•	105	Receiv	ed by	Sple	7		Com	pany عنواً أَلِمَتُونَ	2 1403	
Relinquished by Company 2)	Date / Time Received by Company 2)												
Relinquished by Company 3)		Date / Time				ed by	au	· .	Company Z/CO T/			2/12/14	
Relinquished by Company		Da	te / Time	)	Receiv	ed by	-			_	Company		
4)		1			4)								

777 New Durham Road Edison, New Jersey 08817 Phone: (732) 549-3900 Fax: (732) 549-3679

THE LEADER IN ENVIRONMENTAL TESTING	CHA	IN OF	CUST	ODY	/ ANA	LYSIS	REC	UEST	Ī			Page 3 of 3
Name (for report and invoice)  Mak ( ) borne		Sampler	s Name (	Printed )	Vero		Site/Project Identification Area 29 Rambiel Enhancemt Investigation					
Company TRC										N2_ NY:□	Reduced	
Address al Grill- Rd. N:	Analysis Termsround Timo Standard  Rush Chragos Authorized For: 2 Week			ZZ.	NALYSIS REO	UESTED (E	INTER %: BELO	REQUEST)		LAB USE ONLY Project No:		
City William CT State				503							Job No: 11114	
Phone 860-305-5903	1	1 Week Other	<u> </u>	No. of.	€C \ €360							Sample
Sample Identification	Date	Time	Matrix	Cont.	٢٠٠							Numbers
29-EGG13(6.5)	2/11/14	1640	501	4	X							-21
29-EGG12(6')	11-		201	4	X			-			_	-22 -23
29-EGGU(1.5.)			Soil	4	X		-					- <i>U</i> 3
79- FGF11 (0.16') 29- FGF17 (1.5')			So:1	4	$\Diamond$							-25
29-FGF13/6.5'		1850		J	<del>\( \)</del>							-26
29-EGE14 (8')	11	1905		4	X							-27
29-EGF15(1.5')		1920	Soil	4	Х							, 28
29-EGF16/6')	1 1	1930	50i)		Х							-29
29-EGF17(6')	2/11/14	1940	<u>So;`I</u>	4_	X							-30
Preservation Used: $1 = ICE$ , $2 = HCI$ , $3 = H_2SO$ 6 = Other $C = C$				Soil: Water:	6,7							
Special Instructions					·					Water Meta	ıls Filtere	ed (Yes/No)?
Relinquished by Compa	nv		Ds	ate / Time		Received1	v /;	,,,		Compar	ıv 7	ごの!

Special Instructions				Water Metals Filtered (Yes/No)?
Relinquished by	Company	Date / Time	Received by	Company / / / / / / / / / / / / / / / / / / /
Mark June	- TRC	2/12/14 1405	WACK Bridge	TA 316 140
Relinquished by	Company	Date / Time	Received by	Company
2	1		2)/ () / (	
Relinquished by	Company	Date / Time	Recoved by	Company
3////		2/1/pru	3) AHar 2	UD TA 2/12/14
Relinquished by	Company	Date / Time	Received by	Company
4)		l l	4)	
Laboratory Certifications: New .	Jersey (12028), New	/ York (11452), Pennsylvania (6	68-522), Connecticut (PH-02	00), Rhode Island (132). TAL-0016 (0408)

Massachusetts (M-NJ312), North Carolina (No. 578)

TAL - 0016 (0408)

umber:	71114		IESTAIT	nerica Edi	pH L		iperature	aliu				Page _	of
er of Coolers:	$\overline{-2}$			IR Gun#	-4					100 4470		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a little of the
er of Coolers: Cooler#1 (Deg C) (Raw/Correcte	The state of the state of	4 111	0.107	IR Gun # ler #4 (Deg (	, ,				2. The state of th	71.15 4 7 7 7 7			
Cooler #2 (Deg C) (Raw/Correcte	7			ler #5 (Deg									
Cooler#3 (Deg C) (Raw/Correcte		4.5		ler#6 (Deg (									
		000	Nitrate Nitrite	*******		2110	,	A15I.		700	Total	Total Phos	241
Sample No.	Ammonia (pH<2)	COD (pH<2)	(pH<2)	*Metals (pH<2)	Pest (pH 5-9)	PHC (pH<2)	Phenois (pH<2)	Sulfide (pH>9)	TKN (pH<2)	TOC (pH<2)	Cyanide (pH>12)	(pH<2)	Othe
Odinple No.	1	(p:: 42)	(51.1-2)		(55-3)	(11.1.4.7	(51.1-2)	(р.:- 0)	(21.132)	()()	()	(511-2)	
									<u>.</u> .				
		,					-						
	If pH adjus			l				L		L	L		

Project Manager and the Department Manager should be notified about the samples which were pH adjusted.

* Samples for Meteranalysis which are out of compliance must be acidified at least 24 hours prior to analysis

EDS-WI-038,	Rev 3,	10/8/12

Initials:_____

Date: (

Expiration Date:

# **Login Sample Receipt Checklist**

Client: TRC Environmental Corporation

Job Number: 460-71114-1

Login Number: 71114 List Number: 1

Creator: Rivera, Kenneth

List Source: TestAmerica Edison

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	Not present
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.1°C, 1.1°C, IR #4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	·
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.



# **ANALYTICAL REPORT**

Job Number: 460-71165-1

Job Description: Area 29 Remedial Enhancement Investigati

For:

TRC Environmental Corporation 21 Griffin Road North Windsor, CT 06095

Attention: Mr. Mark Winbourne

Approved for release, Sarah E Brown Project Mgmt. Assistant 2/28/2014 5:59 PM

Designee for
Melissa Haas, Project Manager I
777 New Durham Road, Edison, NJ, 08817
(203)944-1310
melissa.haas@testamericainc.com
02/28/2014

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Edison Project Manager.

TestAmerica Edison Certifications and Approvals: Connecticut: CTDOH #PH-0200, New Jersey: NJDEP (NELAP) #12028, New York: NYDOH (NELAP) #11452, NYDOH (ELAP) #11452, Pennsylvania: PADEP (NELAP) 68-00522 and Rhode Island: RIDOH LAO00132



Cover Title Page	1
Data Summaries	5 .
Report Narrative	5
Sample Summary	8
Executive Summary	9
Method Summary	18
Method / Analyst Summary	19
Sample Datasheets	20
Data Qualifiers	135
Lab Chronicle	136
Certification Summary	148
Organic Sample Data	149
GC/MS VOA	149
8260C	149
8260C QC Summary	150
8260C Sample Data	225
Standards Data	372
8260C ICAL Data	372
8260C CCAL Data	428
Raw QC Data	457
8260C Blank Data	457
8260C LCS/LCSD Data	489
8260C MS/MSD Data	557
8260C Run Logs	573
8260C Prep Data	585
GC VOA	587
	~~

8015D_GRO	587
8015D_GRO QC Summary	588
8015D_GRO Sample Data	595
Standards Data	607
8015D_GRO ICAL Data	607
8015D_GRO CCAL Data	610
Raw QC Data	616
8015D_GRO Blank Data	616
8015D_GRO LCS/LCSD Data	619
8015D_GRO MS/MSD Data	625
8015D_GRO Run Logs	627
8015D_GRO Prep Data	629
GC Semi VOA	630
8015D_DRO	630
8015D_DRO QC Summary	631
8015D_DRO Sample Data	636
Standards Data	649
8015D_DRO ICAL Data	649
8015D_DRO CCAL Data	652
Raw QC Data	660
8015D_DRO Blank Data	660
8015D_DRO LCS/LCSD Data	675
8015D_DRO MS/MSD Data	679
8015D_DRO Run Logs	681
8015D_DRO Prep Data	685
organic Sample Data	686

General Chemistry Data	686
Gen Chem Cover Page	687
Gen Chem MDL	688
Gen Chem Analysis Run Log	690
Shipping and Receiving Documents	693
Client Chain of Custody	694
Sample Receipt Checklist	699

#### **CASE NARRATIVE**

**Client: TRC Environmental Corporation** 

**Project: Area 29 Remedial Enhancement Investigati** 

Report Number: 460-71165-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### RECEIPT

The samples were received on 2/14/2014 4:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.1° C and 2.1° C.

#### Except:

The following sample was submitted for analysis; however, it was not listed on the Chain-of-Custody (COC): 29-WGS28(7.0') (460-71165-36). The client was contacted and confirmed that the sample should be analyzed.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required mperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

#### **DIESEL RANGE ORGANICS**

Samples 460-71165-32 through 460-71165-35 were analyzed for Diesel Range Organics in accordance with EPA SW-846 Method 8015D DRO. The samples were prepared on 02/19/2014 and analyzed on 02/20/2014 and 02/21/2014.

#2 Diesel Fuel failed the recovery criteria low for the MS and MSD of sample 460-71165-33 in batch 460-208639. #2 Diesel Fuel exceeded the rpd limit.

Refer to the QC report for details.

Sample 460-71165-33(5X) required dilution prior to analysis. The reporting limits have been adjusted accordingly.

The following samples were diluted to bring the concentration of target analytes within the calibration range: 29-GPBT6(6-8') (460-71165-33 MS), 29-GPBT6(6-8') (460-71165-33 MSD). Elevated reporting limits (RLs) are provided.

No other difficulties were encountered during the DRO analyses.

All other quality control parameters were within the acceptance limits.

#### **DIESEL RANGE ORGANICS**

Samples 460-71165-32 through 460-71165-35 were analyzed for Diesel Range Organics in accordance with EPA SW-846 Method 8015B - DRO. The samples were prepared on 02/18/2014 and analyzed on 02/26/2014.

No difficulties were encountered during the Diesel Range Organics analyses.

All quality control parameters were within the acceptance limits.

#### **VOLATILE ORGANICS**

amples 460-71165-1 through 460-71165-18 and 460-71165-20 through 460-71165-36 were analyzed for Volatile organics in accordance with EPA SW-846 Methods 8260C. The samples were prepared on 02/17/2014 and analyzed on 02/19/2014, 02/20/2014, 02/21/2014, 02/22/2014, 02/24/2014 and 02/25/2014.

Acetone was detected in method blank MB 460-208774/6 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged "J". If the associated sample reported a result above the MDL and/or RL, the result has been "B" flagged.

Acetone was detected in method blank MB 460-209164/6 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged "J". If the associated sample reported a result above the MDL and/or RL, the result has been "B" flagged.

The laboratory control sample (LCS) for batch 208259 recovered outside control limits for the following analytes: Carbon tetrachloride, 1,1,1-Trichloroethane, and 1,4-Dioxane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

The laboratory control sample (LCS) for batch 208368 recovered outside control limits for the following analytes: 1,1,2,2-Tetrachloroethane, Bromomethane and 1,4-Dioxane. These analytes were not detected in the associated samples; therefore, the data have been flagged and reported.

The laboratory control sample (LCS) for batch 208583 recovered outside control limits for the following analytes: 1,1,2,2-Tetrachloroethane, 1,4-Dioxane, and Bromomethane. These analytes were not detected in the associated samples. The data has been flagged and reported.

The laboratory control sample / laboratory control sample duplicate (LCS/LCSD) %RPD for batch 209164 recovered outside control limits for the following analytes: 2-Butanone and 1,4-Dioxane. The LCS recovery was outside control limits for 1,4-Dioxane. This analyte was biased high in the LCS and was not detected in the associated samples. The data has been flagged and reported.

Bromomethane and Methylcyclohexane failed the recovery criteria low for the MS of sample 460-71165-14 in batch 460-208583. 1,1,2-Trichloroethane and 4-Methyl-2-pentanone failed the recovery criteria high.

For the MSD of sample 460-71165-14 in batch 460-208938, Bromomethane failed the recovery criteria low. 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, 1,4-Dioxane and 4-Methyl-2-pentanone failed the recovery criteria high. Also, 1,4-Dioxane and Acetone exceeded the rpd limit.

Isopropylbenzene and Methylcyclohexane failed the recovery criteria low for the MS of sample 460-71165-21 in batch 460-208938.

For the MSD of sample 460-71165-21 in batch 460-208431, several analytes failed the recovery criteria low. 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane and 1,2-Dibromo-3-Chloropropane failed the recovery criteria high. Also, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane and 1,2-Dibromo-3-Chloropropane exceeded the rpd limit.

Several analytes failed the recovery criteria high and low for the MS and MSD of sample 460-71165-33 in batch 460-208431. Several analytes failed the recovery criteria high.

- 1,1,2,2-Tetrachloroethane, 1,4-Dioxane, 4-Methyl-2-pentanone and Bromoform failed the recovery criteria low for the MS of sample 460-71165-3 in batch 460-208259. Bromomethane failed the recovery criteria high.
- 1,1,2,2-Tetrachloroethane and 4-Methyl-2-pentanone failed the recovery criteria low for the MSD of sample 460-71165-3 in batch 460-209384. Bromomethane failed the recovery criteria high.

The continuing calibration verification (CCV) associated with batch 208259 recovered outside control limits for 2-Hexanone, 4-Methyl-2-pentanone, and 1,4-Dioxane. The samples associated with this CCV were non-detects for the affected analytes. The data has been qualified and reported.

The continuing calibration verification (CCV) associated with batch 208368 recovered outside control limit for several analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

The continuing calibration verification (CCV) associated with batch 208583 recovered outside control limits for 1,1,2,2-Tetrachloroethane, 1,2-Dibromo-3-Chloropropane, 2-Butanone, 2-Hexanone, 4-Methyl-2-pentanone, Acetone, and Bromomethane. The samples associated with this CCV were non-detects for the affected analytes. The data has been qualified and reported.

The continuing calibration verification (CCV) associated with batch 208431 recovered outside control limits for Dichlorodifluoromethane, Bromomethane, Trichlorofluoromethane, and Bromoform. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

The continuing calibration verification (CCV) associated with batch 208774 recovered outside control limits for Acetone, 2-Butanone, Dichlorodifluoromethane, and Methyl acetate. The data has been qualified and reported.

The continuing calibration verification (CCV) associated with batch 208938 recovered outside control limit for Dichlorodifluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

The continuing calibration verification (CCV) associated with batch 209164 recovered outside control limits for 1,4-Dioxane and

Dichlorodifluoromethane. The samples associated with this CCV were non-detects for the affected analytes. The data has been qualified and reported.

efer to the QC report for details.

The following samples were diluted to bring the concentration of target analytes within the calibration range: 29-WGT28(6.0') (460-71165-13), 29-WGT23(7.5') (460-71165-20), 29-WGT26(6.5') (460-71165-15), 29-WGT27(6.5') (460-71165-14), 29-WGS25(6.0') (460-71165-8), 29-WGS26(6.0') (460-71165-10), 29-WGS23(13.5') (460-71165-2), 29-WGS23(6.5') (460-71165-1), 29-WGS23(10.5') (460-71165-6), 29-WGS24(6.5') (460-71165-7). Elevated reporting limits (RLs) are provided.

The following samples were diluted due to the abundance of target and/or non-target analytes: 29-GPBT6(6-8') (460-71165-33), 29-WGS28(7.0') (460-71165-36), 29-WGT24(17.5') (460-71165-18), 29-WGT24(7.5') (460-71165-17), 29-WGT25(6.5') (460-71165-16), 29-WGU28(2.0') (460-71165-31), 29-WGU29(3.0') (460-71165-30), 29-WGU27(7.6') (460-71165-29). Elevated reporting limits (RLs) are provided.

No other difficulties were encountered during the Volatile organics analyses.

All other quality control parameters were within the acceptance limits.

#### **VOLATILE ORGANICS**

Sample 460-71165-19 was analyzed for Volatile organics in accordance with EPA SW-846 Methods 8260C. The samples were analyzed on 02/26/2014.

Bromomethane, Chloromethane, Dichlorodifluoromethane and Vinyl chloride exceeded the rpd limit for the MSD of sample 460-71609-1 in batch 460-209384.

The continuing calibration verification (CCV) associated with batch 209384 recovered outside control limit for Cyclohexane, Dichlorodifluoromethane and 1,1,2-Trichloro-1,2,2-trifluoroethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Refer to the QC report for details.

No other difficulties were encountered during the Volatile organics analysis.

other quality control parameters were within the acceptance limits.

#### PERCENT SOLIDS/PERCENT MOISTURE

Samples 460-71165-1 through 460-71165-18 and 460-71165-20 through 460-71165-36 were analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D). The samples were analyzed on 02/17/2014.

No difficulties were encountered during the %solids/moisture analyses.

All quality control parameters were within the acceptance limits.

## **SAMPLE SUMMARY**

Job Number: 460-71165-1

Client: TRC Environmental Corporation

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
460-71165-1	29-WGR23(6.5')	Solid	02/12/2014 1410	02/14/2014 1630
460-71165-2	29-WGR22(13.5')	Solid	02/12/2014 1435	02/14/2014 1630
460-71165-3	29-WGR21(2.5')	Solid	02/12/2014 1450	02/14/2014 1630
460-71165-4	29-WGS21(1.0')	Solid	02/12/2014 1505	02/14/2014 1630
460-71165-5	29-WGS22(8.5')	Solid	02/12/2014 1520	02/14/2014 1630
460-71165-6	29-WGS23(10.5')	Solid	02/12/2014 1530	02/14/2014 1630
460-71165-7	29-WGS24(6.5')	Solid	02/12/2014 1545	02/14/2014 1630
460-71165-8	29-WGS25(6.0')	Solid	02/12/2014 1600	02/14/2014 1630
460-71165-9	29-WGS26(6.0')	Solid	02/12/2014 1615	02/14/2014 1630
460-71165-10	29-WGS27(6.0')	Solid	02/12/2014 1620	02/14/2014 1630
460-71165-11	29-WGS29(2.3')	Solid	02/12/2014 1640	02/14/2014 1630
460-71165-12	29-WGT29(6.0')	Solid	02/12/2014 1720	02/14/2014 1630
460-71165-13	29-WGT28(6.0')	Solid	02/12/2014 1730	02/14/2014 1630
460-71165-14	29-WGT27(6.5')	Solid	02/12/2014 1745	02/14/2014 1630
460-71165-15	29-WGT26(6.5')	Solid	02/12/2014 1755	02/14/2014 1630
460-71165-16	29-WGT25(6.5')	Solid	02/12/2014 1800	02/14/2014 1630
460-71165-17	29-WGT24(7.5')	Solid	02/14/2014 0820	02/14/2014 1630
460-71165-18	29-WGT24(17.5')	Solid	02/14/2014 0830	02/14/2014 1630
460-71165-19FB	FB021414	Water	02/14/2014 0800	02/14/2014 1630
460-71165-20	29-WGT23(7.5')	Solid	02/14/2014 0835	02/14/2014 1630
460-71165-21	29-WGT22(7.5')	Solid	02/14/2014 0850	02/14/2014 1630
460-71165-21MS	29-WGT22(7.5')	Solid	02/14/2014 0850	02/14/2014 1630
460-71165-21MSD	29-WGT22(7.5')	Solid	02/14/2014 0850	02/14/2014 1630
460-71165-22	29-WGT21(10.5')	Solid	02/14/2014 0915	02/14/2014 1630
460-71165-23	29-WGU21(3.0°)	Solid	02/14/2014 0925	02/14/2014 1630
460-71165-24	29-WGU22(10.5')	Solid	02/14/2014 0950	02/14/2014 1630
460-71165-25	29-WGU23(11.6')	Solid	02/14/2014 1010	02/14/2014 1630
460-71165-26	29-WGU24(10.5')	Solid	02/14/2014 1025	02/14/2014 1630
460-71165-27	29-WGU25(10.5')	Solid	02/14/2014 1110	02/14/2014 1630
460-71165-28	29-WGU26(7.0')	Solid	02/14/2014 1130	02/14/2014 1630
460-71165-29	29-WGU27(7.6')	Solid	02/14/2014 1145	02/14/2014 1630
460-71165-30	29-WGU29(3.0')	Solid	02/14/2014 1200	02/14/2014 1630
460-71165-31	29-WGU28(2.0')	Solid	02/14/2014 1255	02/14/2014 1630
460-71165-32	29-GPBT4(5-6')	Solid	02/14/2014 1310	02/14/2014 1630
460-71165-33	29-GPBT6(6-8')	Solid	02/14/2014 1320	02/14/2014 1630
460-71165-33MS	29-GPBT6(6-8')	Solid	02/14/2014 1320	02/14/2014 1630
460-71165-33MSD	29-GPBT6(6-8')	Solid	02/14/2014 1320	02/14/2014 1630
460-71165-34	29-GPBT7(5-7')	Solid	02/14/2014 1330	02/14/2014 1630
460-71165-35	29-GPBT7(15-17')	Solid	02/14/2014 1345	02/14/2014 1630
460-71165-36	29-WGS28(7.0')	Solid	02/12/2014 1630	02/14/2014 1630

Client: TRC Environmental Corporation

			Limit	Units	Method	
460-71165-1 29-WGR23(6.5')						
Benzene	630		470	ug/Kg	8260C	
Ethylbenzene	33000		470	ug/Kg	8260C	
Xylenes, Total	140000		940	ug/Kg	8260C	
Cyclohexane	35000		470	ug/Kg	8260C	•
Isopropylbenzene	9300	• •	470	ug/Kg	8260C	
Methylcyclohexane	160000		470	ug/Kg	8260C	
Percent Moisture	9.7		1.0	%	Moisture	
Percent Solids	90.3		1.0	%	Moisture	
460-71165-2 29-WGR22(13.5')						
Benzene	97	J	200	ug/Kg	8260C	
Ethylbenzene	10000		200	ug/Kg	8260C	
Xylenes, Total	47000		400	ug/Kg	8260C	
Cyclohexane	19000		200	ug/Kg	8260C	
Isopropylbenzene	2800	•	200	ug/Kg	8260C	
Methylcyclohexane	57000		200	ug/Kg	8260C	
Percent Moisture	10.7	•	1.0	. %	Moisture	. *
Percent Solids	89.3		1.0	%	Moisture	
460-71165-3 29-WGR21(2.5')	·	•			,	
Toluene	0.17	J	0.90	ug/Kg	8260C	
Methylcyclohexane	0.23	J	0.90	ug/Kg	8260C	
Percent Moisture	7.6		1.0	%	Moisture	
Percent Solids	92.4		1.0	· <b>%</b>	Moisture	
460-71165-4 29-WGS21(1.0')						
Acetone	14	В	4.8	ug/Kg	8260C	
Toluene	0.19	J	0.96	ug/Kg	8260C	
Methylcyclohexane	0.21	j	0.96	.ug/Kg	8260C	
Percent Moisture	8.1		1.0	%	Moisture	
Percent Solids	91.9		1.0	%	Moisture	
460-71165-5 29-WGS22(8.5')		•				
Acetone	5.8	В	4.2	ug/Kg	8260C	
Toluene	0.19	J	0.84	ug/Kg	8260C	
Methylcyclohexane	0.18	J	0.84	ug/Kg	8260C	
Percent Moisture	9.3		1.0	%	Moisture	
Percent Solids	90.7		1.0	%	Moisture	

Client: TRC Environmental Corporation

Lab Sample ID Cli Analyte	ient Sample ID	Result	Qualifier	Reporting Limit	Units	Method	
460-71165-6	29-WGS23(10.5')						
Toluene		67	J	160	ug/Kg	8260C	
Ethylbenzene		4300		160	ug/Kg	8260C	
Xylenes, Total		23000	•	320	ug/Kg	8260C	
Cyclohexane		13000		160	ug/Kg	8260C	
isopropylbenzene		1900		160	ug/Kg	8260C	
Methylcyclohexane		42000		160	ug/Kg	8260C	
Percent Moisture		11.6		1.0	%	Moisture	
Percent Solids		88.4		1.0	%	Moisture	
460-71165-7	29-WGS24(6.5')						
Benzene		80	J	410	ug/Kg	8260C	
Ethylbenzene		19000		410	ug/Kg	8260C	
Xylenes, Total		83000		830	ug/Kg	8260C	
Cyclohexane		19000		410	ug/Kg	8260C	
Isopropylbenzene	*	7600		410	ug/Kg	8260C	
Methylcyclohexane		140000		410	ug/Kg	8260C	
Percent Moisture		13.1		1.0	%	Moisture	
Percent Solids		86.9		1.0	%	Moisture	. "
460-71165-8	29-WGS25(6.0')						
Benzene		100	J	370	ug/Kg	8260C	
Toluene		1900		370	ug/Kg	8260C	
Ethylbenzene		7900		370	ug/Kg	8260C	
Xylenes, Total		35000		750	ug/Kg	8260C	
Cyclohexane		25000		370	ug/Kg	8260C	
Isopropylbenzene		3400		370	ug/Kg	8260C	
Methylcyclohexane		72000		370	ug/Kg	8260C	
Percent Moisture		9.5		1.0	%	Moisture	
Percent Solids		90.5		1.0	%	Moisture	
460-71165-9	29-WGS26(6.0')						
Benzene		280		95	ug/Kg	8260C	
Toluene		7300		95	ug/Kg	8260C	
Ethylbenzene		4700		95	ug/Kg	8260C	
Xylenes, Total		27000		190	ug/Kg	8260C	
O salahassana		9300		95	ug/Kg	8260C	
Cyclonexane		1300		95	ug/Kg	8260C	
•	•						
Isopropylbenzene		24000		95	ug/Kg	8260C	
Cyclohexane Isopropylbenzene Methylcyclohexane Percent Moisture	•			95 1.0	ug/Kg % %	8260C Moisture Moisture	

Client: TRC Environmental Corporation

Lab Sample ID C Analyte	lient Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-71165-10	29-WGS27(6.0')		,			
Benzene		82	J	120	ug/Kg	8260C
Toluene		210		120	ug/Kg	8260C
Ethylbenzene		760		120	ug/Kg	8260C
Xylenes, Total		1200		240	ug/Kg	8260C
Cyclohexane	•	1600		120	ug/Kg	8260C
Isopropylbenzene		240		120	ug/Kg	8260C
Methylcyclohexane		7300		120	ug/Kg	8260C
Percent Moisture		8.7		1.0	%	Moisture
Percent Solids		91.3	K 1	1.0	%	Moisture
460-71165-11	29-WGS29(2.3')					
Acetone		43	В	4.6	·ug/Kg	8260C
Carbon disulfide		0.26	J	0.92	ug/Kg	8260C
2-Butanone		5.7	•	4.6	ug/Kg	8260C
Benzene		0.75	J	0.92	ug/Kg	8260C
Toluene		0.18	J	0.92	ug/Kg	8260C
Cyclohexane		67		0.92	ug/Kg	8260C
Isopropylbenzene		0.44	J	0.92	ug/Kg	8260C
Methylcyclohexane		200	-	0.92	ug/Kg	8260C
Percent Moisture		11.0		1.0	%	Moisture
Percent Solids		89.0		1.0	%	Moisture
			·	,		
460-71165-12	29-WGT29(6.0')	58	В	4.8	ualKa	8260C
Acetone		0.48	В	4.6 0.96	ug/Kg	8260C
Carbon disulfide		0.46 14	J	4.8	ug/Kg ug/Kg	8260C
2-Butanone		2.4		0.96		8260C
Benzene					ug/Kg	8260C
Toluene		0.22	J	0.96	ug/Kg	8260C
Xylenes, Total		1.1	J	1.9	ug/Kg	8260C
Cyclohexane		120		0.96	ug/Kg	
Isopropylbenzene		1.9		0.96	ug/Kg	8260C
Methylcyclohexane		430		0.96	ug/Kg	8260C
Percent Moisture		11.0		1.0	%	Moisture
Percent Solids		89.0		1.0	%	Moisture
460-71165-13	29-WGT28(6.0')					
Ethylbenzene	, 20-11-0 1 20(0.0 )	15	J	85	ug/Kg	8260C
Cyclohexane	,	180		95 85	ug/Kg	8260C
Isopropylbenzene		23	J	85 85	ug/Kg ug/Kg	8260C
		1300	J	85 85	ug/Kg	8260C
Methylcyclohexane Percent Moisture		10.9		1.0	ug/Ng %	Moisture
				4		Moisture
Percent Solids		89.1		1.0	%	woisture

Client: TRC Environmental Corporation

Lab Sample ID C	lient Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-71165-14	29-WGT27(6.5')					
Ethylbenzene	, ,	2000		110	ug/Kg	8260C
Xylenes, Total		130	J	210	ug/Kg	8260C
Cyclohexane		3700		110	ug/Kg	8260C
Isopropylbenzene		1400		110	ug/Kg	8260C
Methylcyclohexane		27000		110	ug/Kg	8260C
Percent Moisture		11.1		1.0	%	Moisture
Percent Solids		88.9		1.0	%	Moisture
460-71165-15	29-WGT26(6.5')					
Benzene	-	62	J	170	ug/Kg	8260C
Ethylbenzene		11000		170	ug/Kg	8260C
Xylenes, Total		26000		350	ug/Kg	8260C
Cyclohexane		11000		170	ug/Kg	8260C
Isopropylbenzene		3600		. 170	ug/Kg	8260C
Methylcyclohexane		55000		170	ug/Kg	8260C
Percent Moisture		12.5		1.0	%	Moisture
Percent Solids		87.5		1.0	%	Moisture
460-71165-16	29-WGT25(6.5')					
Benzene	` .	25	J	180	ug/Kg	8260C
Toluene		470		180	ug/Kg	8260C
Ethylbenzene		5500		180	ug/Kg	8260C
Xylenes, Total		37000		360	ug/Kg	8260C
Cyclohexane		14000		180	ug/Kg	8260C
Isopropylbenzene		3600		180	ug/Kg	8260C
Methylcyclohexane	(	47000		180	ug/Kg	8260C
Percent Moisture		13.9		1.0	%	Moisture
Percent Solids		86.1		1.0	%	Moisture
460-71165-17	29-WGT24(7.5')					
Toluene		70	J	420	ug/Kg	8260C
Ethylbenzene		2500		420	ug/Kg	8260C
Xylenes, Total		11000		840	ug/Kg	8260C
Cyclohexane		22000		420	ug/Kg	8260C
Isopropylbenzene		1900		420	ug/Kg	8260C
Methylcyclohexane		56000		420	ug/Kg	8260C
Percent Moisture		14.0		1.0	%	Moisture
Percent Solids		86.0		1.0	%	Moisture

Client: TRC Environmental Corporation

Lab Sample ID C Analyte	lient Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-71165-18	29-WGT24(17.5')					
Toluene		80	J	350	ug/Kg	8260C
Ethylbenzene		2600		350	ug/Kg	8260C
Xylenes, Total		13000		710	ug/Kg	8260C
Cyclohexane		14000		350	ug/Kg	8260C
Isopropylbenzene		1500	•	350	ug/Kg	8260C
Methylcyclohexane		35000		350	ug/Kg	8260C
Percent Moisture		14.4		1.0	%	Moisture
Percent Solids		85.6		1.0	%	Moisture
460-71165-20	29-WGT23(7.5')					
Ethylbenzene	• •	46	J	83	ug/Kg	8260C
Xylenes, Total		130	J	170	ug/Kg	8260C
Cyclohexane		1000		83	ug/Kg	8260C
Isopropylbenzene		980		.83	ug/Kg	8260C
Methylcyclohexane		11000		83	ug/Kg	8260C
Percent Moisture		10.3		1.0	%	Moisture
Percent Solids		89.7		1.0	%	Moisture
460-71165-21	29-WGT22(7.5')					
Acetone	` ,	20		4.7	ug/Kg	8260C
Carbon disulfide		7.4		0.94	ug/Kg	8260C
Toluene		0.35	J	0.94	ug/Kg	8260C
Isopropylbenzene		3.0		0.94	ug/Kg	8260C
Methylcyclohexane		20		0.9 <del>4</del>	ug/Kg	8260C
Percent Moisture		11.0		1.0	%	Moisture
Percent Solids		89.0		1.0	%	Moisture
460-71165-22	29-WGT21(10.5')					
Acetone		6.6	В	3.9	ug/Kg	8260C
Toluene		0.15	j	0.78	ug/Kg	8260C
Methylcyclohexane		0.25	j .	0.78	ug/Kg	8260C
Percent Moisture		11.4	-	1.0	%	Moisture
Percent Solids		88.6		1.0	% .	Moisture
460-71165-23	29-WGU21(3.0')					
Acetone .		8.8	В	4.7 .	ug/Kg	8260C
Toluene		0.17	j	0.94	ug/Kg	8260C
Methylcyclohexane		0.16	j	0.94	ug/Kg	8260C
Percent Moisture		10.6	•	1.0	%	Moisture
Percent Solids		89.4		1.0	%	Moisture

Client: TRC Environmental Corporation

Lab Sample ID C	Client Sample ID	Result	Qualifier.	Reporting Limit	Units	Method
460-71165-24	29-WGU22(10.5')					
Percent Moisture		13.5		1.0	%	Moisture
Percent Solids		86.5		1.0	%	Moisture
460-71165-25	29-WGU23(11.6')					
Acetone		27		4.6	ug/Kg	8260C
Percent Moisture		9.6		1.0	%	Moisture
Percent Solids		90.4		1.0	%	Moisture
460-71165-26	29-WGU24(10.5')					
Acetone	. ,	13	В	5.1	ug/Kg	8260C
Carbon disulfide		0.91	J	1.0	ug/Kg	8260C
Toluene		0.25	J	1.0	ug/Kg	8260C
Ethylbenzene		4.2		1.0	ug/Kg	8260C
Xylenes, Total		11		2.0	ug/Kg	8260C
Cyclohexane		36		1.0	ug/Kg	8260C
Isopropylbenzene	**	2.5		1.0	ug/Kg	8260C
Methylcyclohexane		89		1.0	ug/Kg	8260C
Percent Moisture	,	14.6		1.0	%	Moisture
Percent Solids		85.4	-	1.0	%	Moisture
460-71165-27	29-WGU25(10.5')					
Acetone	•	28	В	4.2	ug/Kg	8260C
Carbon disulfide		0.52	J	0.84	ug/Kg	8260C
2-Butanone		3.0	J	4.2	ug/Kg	8260C
Benzene		3.3		0.84	ug/Kg	8260C
Toluene		38		0.84	ug/Kg	8260C
Ethylbenzene		54		0.84	ug/Kg	8260C
Xylenes, Total		220		1.7	ug/Kg	8260C
Cyclohexane		47		0.84	ug/Kg	8260C
Isopropylbenzene		7.7		0.84	ug/Kg	8260C
Methylcyclohexane		49 .		0.84	ug/Kg	8260C
Percent Moisture		14.4		1.0	%	Moisture
Percent Solids		85.6		1.0	%	Moisture

Client: TRC Environmental Corporation

Lab Sample ID C Analyte	lient Sample ID	Result	Qualifier	Reporting -Limit	Units	Method
460-71165-28	29-WGU26(7.0')					,
Acetone		56	В.	4.3	ug/Kg	, 8260C
Carbon disulfide		0.34	J	0.87	ug/Kg	8260C
2-Butanone		5.6		4.3	ug/Kg	8260C
Toluene		0.29	J	0.87	ug/Kg	8260C
Ethylbenzene		3.5		0.87	ug/Kg	8260C
Xylenes, Total		5.3		1.7	ug/Kg	8260C
Cyclohexane		28		0.87	ug/Kg	8260C
Isopropylbenzene		3.0		0.87	ug/Kg	8260C
Methylcyclohexane		60		0.87	ug/Kg	8260C
Percent Moisture		11.0		1.0	%	Moisture
Percent Solids		89.0		1.0	%	Moisture
460-71165-29	29-WGU27(7.6')		<b>`</b> .			
Isopropylbenzene		34	J ,	97	ug/Kg	8260C
Percent Moisture		15.6		1.0	%	Moisture
Percent Solids		84.4		1.0	%	Moisture
460-71165-30	29-WGU29(3.0')					
Benzene		27	J	87 ·	ug/Kg	8260C
Ethylbenzene		270		87	ug/Kg	8260C
Xylenes, Total		34	J	170	ug/Kg	8260C
Cyclohexane		2700		87	ug/Kg	8260C
Isopropylbenzene		150		87	ug/Kg	8260C
Methylcyclohexane		5000	· · · · · · · · · · · · · · · · · · ·	87	ug/Kg	8260C
Percent Moisture		8.3	•	1.0	%	Moisture
Percent Solids		91.7		1.0	%	Moisture
		•			•	
460-71165-31	29-WGU28(2.0')					
Benzene		24	J	87	ug/Kg	8260C
Ethylbenzene		· 12	J	87	ug/Kg	8260C
Cyclohexane		1400		87	ug/Kg	8260C
Isopropylbenzene		49	J	87	ug/Kg	8260C
Methylcyclohexane		4100		87	ug/Kg	8260C
Percent Moisture		6.0		1.0	%	Moisture
Percent Solids		94.0		1.0	%	Moisture

Client: TRC Environmental Corporation

		Result	Qualifier	Limit	Units	Method
460-71165-32	29-GPBT4(5-6')					
Acetone		15	В	5.1	ug/Kg	8260C
Carbon disulfide		0.49	J	1.0	ug/Kg	8260C
2-Butanone		2.2	j	5.1	ug/Kg	8260C
Benzene		2.7		1.0	ug/Kg	8260C
Toluene		0.62	J	1.0	ug/Kg	8260C
Ethylbenzene		45		1.0	ug/Kg	8260C
Xylenes, Total		1.3	J	2.0	ug/Kg	8260C
Cyclohexane		73		1.0	ug/Kg	8260C
Isopropylbenzene		5.9		1.0	ug/Kg	8260C
Methylcyclohexane		180		1.0	ug/Kg	8260C
GRO		2400		2400	ug/Kg	8015D
C10-C44		28		10	mg/Kg	8015D
Percent Moisture		16.8		1.0	%	Moisture
Percent Solids		83.2		1.0	%	Moisture
460-71165-33	29-GPBT6(6-8')				n.c	
Benzene		360		180	ug/Kg	8260C
Ethylbenzene	•	13000		180	ug/Kg	8260C
Xylenes, Total		58000		350	ug/Kg	8260C
Cyclohexane		31000	•	180	ug/Kg	8260C
Isopropylbenzene		3900		180	ug/Kg	8260C
Methylcyclohexane		72000		180 .	ug/Kg	8260C
GRO		800000		91000	ug/Kg	8015D
C10-C44		1400		48	mg/Kg	8015D
Percent Moisture		9.5		1.0	%	Moisture
Percent Solids		90.5		1.0	%	Moisture
460-71165-34	29-GPBT7(5-7')					
Methylene Chloride	, ,	0.85		0.84	ug/Kg	8260C
Acetone		10	В	4.2	ug/Kg	8260C
Methylcyclohexane		0.26	J	0.84	·ug/Kg	8260C
C10-C44		54		9.3	mg/Kg	8015D
Percent Moisture		6.8		1.0	%	Moisture
Percent Solids		93.2		1.0	%	Moisture
460-71165-35	29-GPBT7(15-17')					
Methylene Chloride	20-0FD11(10-11 )	0.39	J	0.89	ug/Kg	8260C
Acetone		13	В	4.5	ug/Kg ug/Kg	8260C
C10-C44		95	J	10	mg/Kg	8015D
		95 12.6		1.0	%	Moisture
Percent Moisture		87.4		1.0	%	Moisture

Client: TRC Environmental Corporation

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method	
460-71165-36 29-WGS28(7.0')		,	<u>.</u> . <u></u>	<u> </u>		
Cyclohexane	3700		85	ug/Kg	8260C	
Isopropylbenzene	730		85	ug/Kg	8260C	·
Methylcyclohexane	16000		85	ug/Kg	8260C	
Percent Moisture	9.1		1.0	%	Moisture	
Percent Solids	90.9	•	1.0	%	Moisture	

#### **METHOD SUMMARY**

**Lab Location** 

TAL EDI

**EPA Moisture** 

SW846 8260C

Client: TRC Environmental Corporation

Volatile Organic Compounds by GC/MS

Gasoline Range Organics (GRO) (GC)

Diesel Range Organics (DRO) (GC)

Volatile Organic Compounds by GC/MS

Microwave Extraction

Closed System Purge and Trap

Closed System Purge and Trap

 Method
 Preparation Method

 SW846 8260C
 SW846 5035

 SW846 8015D
 SW846 5035

 SW846 8015D
 SW846 3546

SW846 5030C

Job Number: 460-71165-1

#### Lab References:

Percent Moisture

Matrix: Water

Description

Matrix: Solid

TAL EDI = TestAmerica Edison

Purge and Trap

#### **Method References:**

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

# Shipping and Receiving Documents

# <u>TestAmerica</u>



777 New Durham Road Edison, New Jersey 08817 Phone: (732) 549-3900 Fax: (732) 549-3679

CHAIN OF 460-71165 Chain of Custody 3T Page 1 of 4

THE LEADER IN ENVIRONMENTAL TESTING	CITA	IIIA OI						Page 1 c					
Name ( for report and invoice )				( Printed					ct Identi				
Mark Winbourne -		1	<u>e. n</u>	Jever	)		4	rec	rg R	وتلصم	al Enh	ance	nent lovestigation
Company		P. O. #	( 5	643			S	tate (Lo	cation of	site):	M: X	NY:	Other:
IRC			9,	643			R	egulator	ry Progr	am: 🍳	1 Level	1.NJ	Reduced
Address		Analysis T		d Time	<u> </u>	ANALYSIS REQUESTED (ENTER X BELOW TO INDICATE REQUEST)							LAB USE ONLY
21 Griffin Rd. North		Standard	X		/			ļ					Project No:
City State	<u> </u>	Rush Chra	gos Autho	rized For:	12%			- 1					
Windsor Ci		2 Week	닏		5035			- 1		ŀ			Job No:
Phone Fax		1 Weck	Weck							İ			71165
860-305-5903		Othor	<u> </u>	<del></del>	ب جا								, , ,
Comple Manification	Date	Time	Madei	No. of.	100	]							Sample Numbers
Sample Identification		Time	Matri		1								Rambers
29-WGR23(G.5')	2/12/14		20:1		X								
29-WGR22(13.51)		1435		14	X								-72
29-WGRZ1(2,5')		1450		4	X								-3
29-mezai (1.01)		1202		4	X								-4
29-WGSZZ(8,5')		1520		4	X								-5
29·WG23(10.5.)		1570		4	X								-6
29-WGS24(6151)		1545		4	X								-1
29. LGS25 (6.0')		1600		4	×								-8
29-WGSaG(6.01)		1612	V	4	×								-9
29. WGS27(c.oi)	2/12/14	1620	50,1	4	X								-10
Preservation Used: 1 = ICE, 2 = HCl, 3 = H ₂		5 = Na(	ЭН	Soil	1,6						SHC	PRT	
6 = Other (NeoH) DI, 7	= Other			Water							HO	LD	
Special Instructions EDDs Laquir	242 EQU	is Z	042	2 I EA	<b>4</b> : ^	TH	zsA	a : T6	2C-C	7	— Water M	erals Filte	ered (Yes/No)? NIA
Relinquished by Com	pany			Date / Tim	e	Receiv	ed by	<del>)                                    </del>		<u> </u>	Comp		3.03 (100.10).
Mild on	pany TRC	-	2/14	114, 16	,3 ₀	1) (4	1/	<u></u>	~			1 Ed :	2/14/14 16:30
	pany			Date / Tim	е	Receiv	ed by				Comp	any	11/1/2
2)				1		2)						- 1K	#1 421 c 1
Relinquished by Com	pany			Date / Tim	е	Receiv	ed by				Comp	any	0/0 10-
3)				1		3)	-He' 010.1°C					901	
Relinquished by Com	pany			Date / Tim	е	Receiv	ed by			C/	Fomp		-2 50177
Laboratory Contifications: New Jacony (1		Sec. 1. 444	150	1		4)			(2)	حر)	#/	580	U1 1)80L3

Laboratory Certifications: New Jersey (12028), New York (11452), Pennsylvania (68-522). Connecticut (PH-0200), Rhode Island (132).

TAL - 0016 (0408)

Massachusetts (M-NJ312), North Carolina (No. 578)



777 New Durham Road Edison, New Jersey 08817

Phone: (732) 549-3900 Fax: (732) 549-3679

THE LEADER IN ENVIRONMENTAL TESTING	СНА	IN OF	CUS	ΓΟDΥ	/AN	ALYS	SIS F	REQ	UES	ST.				Page <u>2</u> of <u>4</u>
Name (for report and invoice)		Sampler	s Name (					Site/P	roject	Identifi	cation			
Mark Winbourne		نـــا	1R.	Nev	س			An	202	9 2	emed	ial 8	nhance	ment Investigation
Company		P. O. #	656					State	(Locat	ion of s	ite):	NJ: X	NY:	Other:
TRC			ا کار چا	13				Regul	atory f	Program	n: Q,	Leve	・シブ	leduced
Address		Analysis T	urnaround '	Timo		ANALYS	S REQUES	STED (EN	TER 'X: 88	ELOW TO IN	DIÇATE RE	XUEST)		LAB USE ONLY
21 Griffin Rd. North		Standard	$\boxtimes$					~ 7						Project No:
21 Griffin Rd. North State		Rush Chra	ges Authoriz	ed For:	35		ابسن	الثيرد			-			
Windsor CT		2 Week			NC	5	53	اؤر					1 1	Job No:
Phone Fax		1 Week			د ځا	8	ا: م	, L		1			1 1	1165
860-305-5903		Other	<u> </u>		قار ا	7	2 E	\$-4						'''
	_			No. of.	5 3	150	₹	= Z				.		Sample
Sample Identification	Date	Time	Matrix	Cont.	<u>  ` ` `</u>	<u>'</u> '	حـ	C3						Numbers
aq: wG529(2.3')	3/12/14	1640	Soil	4	X									-Let - ()
29-WGT29(6.01)		1720	•	4	X									1-22-12
ag. ~GT28(6.01)		1730		4	X									-22-13
29-6727(6,5°)		1745		4	X								<u> </u>	-24-14
29-WGT26(~C.5")	0)	1755	V	4	X		7				1 4	-		-25-15
29-WGT&S(6.51)	2/12/14	1800	TicZ	4	X		-		-			•		-25-16
29-WGT24 (7.5')	2/14/14	0820	Sall	4	X			×						24-17
29-WGT24 (17,5')	- 1	0834	5:1	4	X			×						-28 -18
FB021414,		ಯಿಂತ	Ag	3		X								29-19
29-WGT23(7.5')	2/14/14	0325	5:7	4	X			X						-30-20
Preservation Used: 1 = ICE, 2 = HCl, 3 = H ₂ SO ₄	, 4 = HNO ₃	, 5 _, = Na(	ЭН	Soil:	6,7			١,٦						
6 = Other Frozen, 7 = 0	ther Mes	H/DI		Water:		1,2								

Special Instructions [DDS P	equired: Equis EP	4RZ/FAA;NI	Hazsite; TRC-CT	Water Metals Filtered (Yes/No)? NIA
Relinquished by	Company	Date / Time	Received by	Company
Mult Joi	TRC	2/14/14/1630	1) Km /2-	17Ata 2119/19/16:3
Relinquished by	Company	Date / Time	Received by	Company
2)		1	2)	·
Relinquished by	Company	Date / Time	Received by	Company
3)		ļ	3)	
Relinquished by	Company	Date / Time	Received by	Company
4)		1	4)	

Laboratory Certifications: New Jersey (12028), New York (11452), Pennsylvania (68-522), Connecticut (PH-0200), Rhode Island (132).

TAL - 0016 (0408)

# **TestAmerica**

# **CHAIN OF CUSTODY / ANALYSIS REQUEST**

Ц

THE LEADER IN ENVIRONMENTAL TESTING													Page 3 of 1
Name (for report and invoice)  Mck () h book		Samplers							Identifica		_		
			R.N	ever	<u>ر</u>		Arz	a 20	7 Kem	edia	طمكيا	ance	ment investigas
Company		P. O. #	65	643			State	(Locat	ion of site	): NJ:	<u> </u>	VY: ☐	Other:
		<u> </u>			<del></del>							NK	ed <i>ice d</i> LAB USE ONLY
Address 21 Gillin Rd. N.		Analysis Tu Standard	/	Time		ANALYSIS F	EQUESTED (	NTER 7X. B	ELOW TO INDIC	ATE RECUES			Project No:
Dity Whole CT State	Go 95	Rush Chrages Authorized For:											Job No:
Phone 960-305-5903		1 Week Othor			35,50	Provi							71165
Sample Identification	Date	Time	Matrix	No. of. Cont.	1200	J _{sw}		·					Sample Numbers
29- WGT22(7.5')	र्भापाप	0850	5-1	la	X	X							
29-WGT21(10,51)		0915	1	4	X								-17
29-WGU21 (3.0')		0925		4	X								73
29-66032 (10.51)		0950		4	X								-24
29-WG 423 (11.6')		1010		4	X								-15
29-WG V24 (10.51)		1025		4	X								-26
29- WGUAS (1015')		1110		4	X								-27
29-WGUZG(7.0')		1130		4	X								-28
29- WG 427 (7.67)	1	1145	7	4	×								_29
29- WGU29(3.5')	3/14/14	ا اکمی	5,1	4	X								-23-30
Preservation Used: 1 = ICE, 2 = HCl., 3 = H ₂ S	D ₄ , 4 = HNO	. 5 = NaC	)H	Soil	1,6								
$6 = Other \frac{Moold \int \overline{\nu} \overline{L}}{}$ , $7 =$				Water									
Special Instructions EDDS Leguin	ed: EG	vis.	ερΑ β	22/1	FAA	INI	Haz	Site	TRO	- cw	ater Met	als Filtere	ed (Yes/No)? NIA
Relinquished by . Comp	any RC		2/14/1	ate / Tim	e	Receive 1)	d by				Compa	TA E	d 2/14/14/
Relinquished by Comp	any		D	ate / Tim	е	Receive	d by				Compa	ny	
2)				]		2)				. <u> </u>			
Relinquished by Comp	any		· D	ate / Tim	е	Receive	d by				Compa	ny	
3)						3)							
Relinquished by Comp	any		D	ate / Tim	e	Receive	d by				Compa	пу	
			1	t		141					1		

Massachusetts (M-NJ312), North Carolina (No. 578)

Page 696 of



777 New Durham Road Edison, New Jersey 08817 Phone: (732) 549-3900 Fax: (732) 549-3679

# **CHAIN OF CUSTODY / ANALYSIS REQUEST**

THE LEADER IN ENVIRONMENTAL TE	STING	<b>U</b> 117	01	000		/ //LI	/~ ha 1	OIO .	, 17- A	OLU	•				1	Page 4	of <u>4</u>
Name ( for report and invoice )			Sample	rs Name (	Printed	)					dentifica						
Mark Winbourn	<u> </u>		$\rightarrow$	1 R.1	Jeve	رزر			Ar	ea :	<u> 29 R</u>	كصعط	iai	Σρρα	سرو	ment	investigo
Company C			P. O. #	,	647												
120						,								1: ~	T K	Peducec	
Address				urnaround	Time		ANALYS	IS REQU	ESTED (E)	TEAT BE	LOW TO INDI	ATE REQUE	ST)				ISE ONLY
21 Griffin Rd North	State		Standard	7		15	1			ļ						Proje	ct No:
Windsor	State CV	•	Rush Chra 2 Wook	agos Authoria	red For:	55.			53						ŀ	.loh	No:
Phone Fax			1 Week	$\equiv$		50	ļ ;	O)	7						,	7117	\ <del>\</del>
860-305-5903			Other			536/ 72/ 876/ 853	G.F.0.		( ) }			1			ŀ	<del>/-/-</del>	<del>')</del>
					No. of.	වුණ	119	A. A.	120	.							nple
Sample Identification		Date	Time	Matrix	Cont.	1	1	1	7				ļ			Nun	bers
29-WG 438(2.	o')	2/14/14	1222	Soil	4	X										-31	, , , , , , , , , , , , , , , , , , , ,
29- GP BT4(5-6	')	[	1310		હ	X	X	X					T .			-32	
29- GP BTC/6-9	``		1320		18	X	×	×	X							-33	
29-GPBT7(5-7		1,	1330	1,	G	X	X	X								-34	
29-GPBT7 (15-		2/14/14	1345	50:1	G		X	V	1	-						-35	
				-	<del>  "</del>	1	´ ๋	^		-		-					
	····	ļ										-					
		<b></b>						<u> </u>									
		-		ļ			-	ļ				<del></del>				· · · · · · · · · · · · · · · · · · ·	
					ļ						-		ļ				
		<u></u>			<u>,                                     </u>												
reservation Used: 1 = ICE, 2 = HC				ОН	Soil:	1,6	1,7	ì									
6 = Other MeoH	<u>DI</u> 7=0	Other M	HO		Water:												
er c	2	1.50.	:< _	0102	1-11	/	-	100	مىلەت م		-04 -	·					110
pecial Instructions EDDS			13 2	74166	ate / Time	12	V /	7002	<del>MIS</del>	- <i>j</i>	1CL -	<u>CIN</u>					
Relinquished by	Compar	Ř c		2/14/1	ale / Time	3 ~ \$	Recei	ved by	/		•	_	Com	any	12/	14/14	16:30
				İ			1)	· · · · · · · ·							<i>y</i>	······································	
elinquished by	Compar	ny		Į Di	ate / Time	€	Hecer	ved by					Comp	any			
			<u> </u>	. (2)								<u> </u>					
elinquished by	Compar	ny	Date / Time Received by				,				Comp	any					
)							3)										
elinquished by	Compar	пу		Dá	ate / Time	)	Recei	ved by	'				Comp	any			
)				4)								1					

b Number:	7116	5		ierica Edi	pH Lo	og						Page _	
mber of Coolers: mp. Cooler#1 (Deg C) (Raw/Comec mp. Cooler#2 (Deg C) (Raw/Correc				IR Gun#									
np: Cooler#1 (Deg C) (Raw/Correc	ted) 7/1	1.0	Temp. Coo	ier#4 (Deg (	(Raw/Cor	rected)		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	Temp. Coo	ler#7 (Deg	C) (Raw/Co	rected)	
mp Cooler#2 (Flee C) (Paul Cores			Temp Cod	ler#5/Den (	) (Raw/Cor	rented)			Temp Coo	er #8 (Deti	C) (Raw/Co	rected)	
np. Cooler#3 (Deg C) (Raw/Correc	0/		Toma Coo	ini welimaa	Nipowick-				Temp Coo	lor #9 (Don	C) (Raw/Co	roctori	
np. cooler no (Deg C) (Kaw Correc	All / And a house and a second and		Lemps (400	et no (Deg.	V. I. Carrier	10000		Le <del>ccione</del>	Anadhumbahali	ioi no keug			A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR
	Ammonia	COD	Nitrate Nitrite	*Metals	Pest	PHC	Phenois	Sulfide	TKN	· TOC	Total Cyanide	Total Phos	Other
Sample No.	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH 5-9)	(pH<2)	(pH<2)	(pH>9)	(pH<2)	(pH<2)	(pH>12)	(pH<2)	
											,		
						-							
				·				···········		<del></del>			
,											<del> </del>		
		· · · · · · · · · · · · · · · · · · ·		·							<u> </u>		
				<del> </del>				<del> </del>	<u> </u>	<del>                                     </del>	<del>                                     </del>		
									! 		<u> </u>		
									<u> </u>			<del>                                     </del>	
			3										
				d record th									
	Sample No	o(s). adju	sted:		· · · · · · · ·			•	•				
	Preservati	ve Name	/Conc.:			•		Volume	of Preserv	ative used	(ml):	<del></del> -	
	Lot # of Pi			rimoni I I c		,   ha n=418-	al a h a · · · · · · · -	-	on Date:				
	⊬roject Ma * Samples	nager and for Metal	a me Depa I analysis v	rtment Man vhich are ou	ager snould t of complie	nce must	a about the be acidified	samples f at least 2	4 hours pri	or to analys	is.		
EDS-WI-038, Rev 3, 10/8/12	Initiale			1/2				Daton	2/14	/14			

# **Login Sample Receipt Checklist**

Client: TRC Environmental Corporation

Job Number: 460-71165-1

List Source: TestAmerica Edison

Login Number: 71165

List Number: 1

Creator: Rivera, Kenneth

Cleator. Nivera, Neimetr		·
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>· N/A</td> <td></td>	· N/A	
The cooler's custody seal, if present, is intact.	N/A	Not present
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	•
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.1°C, 0.1°C, IR #4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	See NCM
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	•
ntainers are not broken or leaking.	True	
Sample collection date/times are provided.	'True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	False	Moisture containers recieved empty for #33
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	•
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.



# **ANALYTICAL REPORT**

Job Number: 460-73634-1

Job Description: FAA/Area 29 REI

For:

TRC Environmental Corporation 21 Griffin Road North Windsor, CT 06095

Attention: Mr. Mark Winbourne

Approved for release Janet Mosley

4/16/2014 1:06 PM

Designee for Melissa Haas, Project Manager I 777 New Durham Road, Edison, NJ, 08817 (203)944-1310 melissa.haas@testamericainc.com 04/16/2014

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Edison Project Manager.

TestAmerica Edison Certifications and Approvals: Connecticut: CTDOH #PH-0200, New Jersey: NJDEP (NELAP) #12028, New York: NYDOH (NELAP) #11452, NYDOH (ELAP) #11452, Pennsylvania: PADEP (NELAP) 68-00522 and Rhode Island: RIDOH LAO00132





4
4
•
6
7
11
12
13
50
53
92
93
95
100
100
100
101
155
349
349 349 390
349
349 390 408
349 390 408 408
349 390

8260C Run Logs	510
8260C Prep Data	518
Inorganic Sample Data	519
General Chemistry Data	519
Gen Chem Cover Page	520
Gen Chem MDL	521
Gen Chem Analysis Run Log	523
Gen Chem Prep Data	524
Shipping and Receiving Documents	525
Client Chain of Custody	526
Sample Receipt Checklist	529

#### **CASE NARRATIVE**

**Client: TRC Environmental Corporation** 

Project: FAA/Area 29 REI

Report Number: 460-73634-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### RECEIPT

The samples were received on 4/2/2014 10:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.2° C.

#### Except:

The purchase order number listed on the COC was incorrect. The client requested that the lab use PO 65643 for billing.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required emperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just bove freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

#### **VOLATILE ORGANICS**

Sample 29-WG-P26 (5.75) (460-73634-3) was analyzed for Volatile organics in accordance with EPA SW-846 Methods 8260C. The samples were prepared on 04/02/2014 and analyzed on 04/14/2014.

The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for batch 218714 recovered outside control limits for the following analyte: 1,4-Dioxane. This analyte was biased high in the LCS/LCSD and was not detected in the associated sample(s); therefore, the data have been reported.

Refer to the QC report for details.

No other difficulties were encountered during the Volatile organics analysis.

All quality control parameters were within the acceptance limits.

#### **VOLATILE ORGANICS**

Samples FB040114 (460-73634-1), TB040114 (460-73634-2), 29-EG-G15GW(4-8) (460-73634-4), 29-EG-G15GW (14-18) (460-73634-5), 29-EG-G17GW (7-11) (460-73634-6), 29-EG-H17GW (5-9) (460-73634-7), 29-EG-I15GW (5-9) (460-73634-8), 29-EG-GBGW (4.5-8.5) (460-73634-9), 29-WG-Q26GW (5-9) (460-73634-10), 29-WG-Q25GW (5-9) (460-73634-11), 29-WG-Q24GW (4.5-8.5) (460-73634-12), 29-WG-Q23GW (5.5-9.5) (460-73634-13), 29-WG-R23GW (5.5-9.5) (460-73634-14), 29-WG-S24GW (4.5-8.5) (460-73634-15), 29-WG-S26GW (5-9) (460-73634-16), 29-WG-R26GW (6.5-10.5) (460-73634-17) and 29-WG-R24GW (8.5-12.5) (460-73634-18) were analyzed for Volatile organics in accordance with EPA SW-846 Methods 8260C. The samples were analyzed on 04/09/2014, 04/10/2014, 04/14/2014 and 04/15/2014.

The continuing calibration verification (CCV) associated with batch 217737 recovered outside control limit for 1,2-Dibromo-3-Chloropropane and Bromomethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: (CCVIS 460-217737/2).

The continuing calibration verification (CCV) associated with batch 217967 recovered outside control limit for Bromomethane. The amples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

The continuing calibration verification (CCV) associated with batch 218769 recovered above the upper control limit for Acetone. The

samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported.

The continuing calibration verification (CCV) associated with batch 218865 recovered outside control limits for 2-Hexanone. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported.

Bromomethane failed the recovery criteria low for the MS of sample 29-EG-GBGW (4.5-8.5)MS (460-73634-9) in batch 460-217737. 1,1,2-Trichloroethane, Cyclohexane, Ethylbenzene and Methylcyclohexane failed the recovery criteria high.

- 1,1,2-Trichloroethane, Cyclohexane, Ethylbenzene and Methylcyclohexane failed the recovery criteria high for the MSD of sample 29-EG-GBGW (4.5-8.5)MSD (460-73634-9) in batch 460-217737.
- 1,1-Dichloroethane, Methyl tert-butyl ether, Methylene Chloride and trans-1,2-Dichloroethene exceeded the RPD limit for the MSD of sample 460-74021-2 in batch 460-217967.
- 1,4-Dioxane exceeded the RPD limit for the MSD of sample 460-74033-3 in batch 460-218865.

Refer to the QC report for details.

The following sample was diluted to bring the concentration of target analytes within the calibration range: 29-WG-Q26GW (5-9) (460-73634-10). Elevated reporting limits (RLs) are provided.

The following samples were diluted to bring the concentration of target analytes within the calibration range: 29-EG-I15GW (5-9) (460-73634-8), 29-WG-Q23GW (5.5-9.5) (460-73634-13), 29-WG-Q24GW (4.5-8.5) (460-73634-12), 29-WG-Q25GW (5-9) (460-73634-11), 29-WG-R24GW (8.5-12.5) (460-73634-18), 29-WG-R26GW (6.5-10.5) (460-73634-17). Elevated reporting limits (RLs) are provided.

The following sample was diluted to bring the concentration of target analytes within the calibration range and due to the abundance of non-target analytes: 29-WG-P26 (5.75) (460-73634-3). Elevated reporting limits (RLs) are provided.

The following sample was diluted to bring the concentration of target analytes within the calibration range: 29-WG-R23GW (5.5-9.5) (460-73634-14), 29-WG-S24GW (4.5-8.5) (460-73634-15), 29-WG-S26GW (5-9) (460-73634-16). Elevated reporting limits (RLs) are provided.

The following samples were diluted to bring the concentration of target analytes within the calibration range: 29-EG-G15GW (14-18) (460-73634-5), 29-EG-G15GW(4-8) (460-73634-4), 29-EG-G17GW (7-11) (460-73634-6), 29-EG-GBGW (4.5-8.5) (460-73634-9), 29-EG-H17GW (5-9) (460-73634-7). Elevated reporting limits (RLs) are provided.

Samples 29-EG-G15GW(4-8) (460-73634-4)[5X], 29-EG-G15GW (14-18) (460-73634-5)[5X], 29-EG-G17GW (7-11) (460-73634-6)[5X], 29-EG-H17GW (5-9) (460-73634-7)[5X], 29-EG-H17GW (5-9) (460-73634-7)[5X], 29-EG-H17GW (5-9) (460-73634-10)[25X], 29-WG-Q25GW (5-9) (460-73634-11)[25X], 29-WG-Q24GW (4.5-8.5) (460-73634-12)[10X], 29-WG-Q23GW (5.5-9.5) (460-73634-14)[20X], 29-WG-S24GW (4.5-8.5) (460-73634-15) [20X], 29-WG-S26GW (5-9) (460-73634-16)[20X], 29-WG-R26GW (6.5-10.5) (460-73634-17)[25X] and 29-WG-R24GW (8.5-12.5) (460-73634-18)[25X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the Volatile organics analysis.

All other quality control parameters were within the acceptance limits.

#### PERCENT SOLIDS/PERCENT MOISTURE

Sample 29-WG-P26 (5.75) (460-73634-3) was analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D). The samples were analyzed on 04/02/2014.

No difficulties were encountered during the %solids/moisture analysis.

All quality control parameters were within the acceptance limits.

### SAMPLE SUMMARY

Client: TRC Environmental Corporation

		Date/Time						
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received				
460-73634-1	FB040114	Water	04/01/2014 0730	04/02/2014 1000				
460-73634-2	TB040114	Water	04/01/2014 0735	04/02/2014 1000				
460-73634-3	29-WG-P26 (5.75)	Solid	04/01/2014 1035	04/02/2014 1000				
460-73634-4	29-EG-G15GW(4-8)	Water	04/01/2014 1530	04/02/2014 1000				
460-73634-5	29-EG-G15GW (14-18)	Water	04/01/2014 1540	04/02/2014 1000				
460-73634-6	29-EG-G17GW (7-11)	Water	04/01/2014 1545	04/02/2014 1000				
460-73634-7	29-EG-H17GW (5-9)	Water	04/01/2014 1610	04/02/2014 1000				
460-73634-8	29-EG-I15GW (5-9)	Water	04/01/2014 1625	04/02/2014 1000				
460-73634-9	29-EG-GBGW (4.5-8.5)	Water	04/01/2014 1120	04/02/2014 1000				
460-73634-9MS	29-EG-GBGW (4.5-8.5)	Water	04/01/2014 1120	04/02/2014 1000				
460-73634-9MSD	29-EG-GBGW (4.5-8.5)	Water	04/01/2014 1120	04/02/2014 1000				
460-73634-10	29-WG-Q26GW (5-9)	Water	04/01/2014 1205	04/02/2014 1000				
460-73634-11	29-WG-Q25GW (5-9)	Water	04/01/2014 1225	04/02/2014 1000				
460-73634-12	29-WG-Q24GW (4.5-8.5)	Water	04/01/2014 1245	04/02/2014 1000				
460-73634-13	29-WG-Q23GW (5.5-9.5)	Water	04/01/2014 1310	04/02/2014 1000				
460-73634-14	29-WG-R23GW (5.5-9.5)	Water	04/01/2014 1335	04/02/2014 1000				
460-73634-15	29-WG-S24GW (4.5-8.5)	Water	04/01/2014 1400	04/02/2014 1000				
460-73634-16	29-WG-S26GW (5-9)	Water	04/01/2014 1415	04/02/2014 1000				
460-73634-17	29-WG-R26GW (6.5-10.5)	Water	04/01/2014 1435	04/02/2014 1000				
460-73634-18	29-WG-R24GW (8.5-12.5)	Water	04/01/2014 1455	04/02/2014 1000				

Client: TRC Environmental Corporation

Lab Sample ID CI Analyte	ient Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-73634-3	29-WG-P26 (5.75)					
Cyclohexane		5700		160	ug/Kg	8260C
Ethylbenzene		720	•	160	ug/Kg	8260C
Isopropylbenzene		970		160	ug/Kg	8260C
Methylcyclohexane		23000		160	ug/Kg	8260C
m-Xylene & p-Xylene		1000		160	ug/Kg	8260C
o-Xylene		440		160	ug/Kg	8260C
Percent Moisture		11.2		1.0	%	Moisture
Percent Solids		88.8		1.0	%	Moisture
460-73634-4	29-EG-G15GW(4-8)					
Cyclohexane	,	650		5.0	ug/L	8260C
Ethylbenzene		820		5.0	ug/L	8260C
Isopropylbenzene		130		5.0	ug/L	8260C
Methylcyclohexane		810		5.0	ug/L	8260C
m-Xylene & p-Xylene		1700		5.0	ug/L	8260C
o-Xylene		1.2	J	5.0	ug/L	8260C
460-73634-5	29-EG-G15GW (14-18)	١				
Cyclohexane	23-23-313311 (14-10)	450		5.0	ug/L	8260C
Ethylbenzene		430		5.0	ug/L	8260C
Isopropylbenzene		85		5.0	ug/L	8260C
Methylcyclohexane		620		5.0	ug/L	8260C
m-Xylene & p-Xylene		1000		5.0	ug/L	8260C
o-Xylene		0.94	J	5.0	ug/L	8260C
460-73634-6	29-EG-G17GW (7-11)		•			
1,1-Dichloroethane	23-20-01/04 (1-11)	5.8		5.0	ug/L	8260C
1,1-Dichloroethene		2.5	J	5.0	ug/L	8260C
Benzene		360	ŭ	5.0	ug/L	8260C
Cyclohexane		460		5.0	ug/L	8260C
Ethylbenzene		220		5.0	ug/L	8260C
Isopropylbenzene		130		5.0	ug/L	8260C
Methylcyclohexane		730		5.0	ug/L	8260C
• •		730 730		5.0	ug/L	8260C
m-Xylene & p-Xylene		120		5.0	ug/L	8260C
o-Xylene		1.2	j	5.0	ug/L	8260C
Toluene		1.4	J	5.0	ug/L	02000

Client: TRC Environmental Corporation

Lab Sample ID CI Analyte	lient Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-73634-7	29-EG-H17GW (5-9)					
1,1-Dichloroethane		4.7	J	5.0	ug/L	8260C
1,1-Dichloroethene		2.3	J	5.0	ug/L	8260C
Benzene		630		5.0	ug/L	8260C
Chloroethane		33	•	5.0	ug/L	8260C
Cyclohexane		510		5.0	ug/L	8260C
Ethylbenzene		440		5.0	ug/L	8260C
Isopropylbenzene		160		5.0	ug/L	8260C
Methylcyclohexane		790		5.0	ug/L	8260C
m-Xylene & p-Xylene		1600		5.0	ug/L	8260C
o-Xylene		130		5.0	ug/L	8260C
Toluene		2.9	J	5.0	ug/L	8260C
460-73634-8	29-EG-I15GW (5-9)		· ·			
Benzene	• • •	100		5.0	ug/L	8260C
Cyclohexane		610		5.0	ug/L	8260C
Ethylbenzene		1400		5.0	ug/L	8260C
Isopropylbenzene		190	•	5.0	ug/L	8260C
Methylcyclohexane		920	•	5.0	ug/L	8260C
m-Xylene & p-Xylene		270		5.0	ug/L	8260C
460-73634-9	29-EG-GBGW (4.5-8.5)				-	
Benzene	,	0.60	J	5.0	ug/L	8260C
Cyclohexane		480	-	5.0	ug/L	8260C
Ethylbenzene		680	•	5.0	ug/L	8260C
Isopropylbenzene		150		5.0	ug/L	8260C
Methylcyclohexane		680		5.0	ug/L	8260C
m-Xylene & p-Xylene		160		5.0	ug/L	8260C
460-73634-10	29-WG-Q26GW (5-9)		•			
Benzene	, , , , , , ,	110		25	ug/L	8260C
Cyclohexane		570		25	ug/L	8260C
Ethylbenzene		1300		25	ug/L ug/L	8260C 8260C
Isopropylbenzene		200	•	25	ug/L	8260C 8260C
Methylcyclohexane		1100		25	ug/L ug/L	8260C
m-Xylene & p-Xylene		5200		25 25	ug/L ug/L	8260C
in Aylene & p-Aylene		3200		20	uy/L	02000

Client: TRC Environmental Corporation

Cyclohexane       220         Ethylbenzene       1300         Isopropylbenzene       160         Methylcyclohexane       410         m-Xylene & p-Xylene       4900         Toluene       11       J         460-73634-12       29-WG-Q24GW (4.5-8.5)       24       J         2-Butanone (MEK)       24       J         4-Methyl-2-pentanone (MIBK)       23       J         Acetone       170       Eenzene         Cyclohexane       220       Ethylbenzene         Ethylbenzene       620       Isopropylbenzene         Methylcyclohexane       490       Isopropylbenzene         m-Xylene & p-Xylene       3600       J         -Xylene       8.9       J         460-73634-13       29-WG-Q23GW (5.5-9.5)         Acetone       190       Benzene         Cyclohexane       55         Ethylbenzene       140         Methylcyclohexane       360         m-Xylene & p-Xylene       2300         460-73634-14       29-WG-R23GW (5.5-9.5)         Benzene       120         Cyclohexane       590         Ethylbenzene       1500         Isopropylbenzene	Reporting Limit Units	Method
Cyclohexane       220         Ethylbenzene       1300         Isopropylbenzene       160         Methylcyclohexane       410         m-Xylene & p-Xylene       4900         Toluene       11         460-73634-12       29-WG-Q24GW (4.5-8.5)         2-Butanone (MEK)       24         4-Methyl-2-pentanone (MIBK)       23         Acetone       170         Benzene       13         Cyclohexane       220         Ethylbenzene       620         Isopropylbenzene       150         Methylcyclohexane       490         m-Xylene & p-Xylene       3600         o-Xylene       8.9       J         Toluene       6.3       J         460-73634-13       29-WG-Q23GW (5.5-9.5)         Acetone       190         Benzene       2.6       J         Cyclohexane       55         Ethylbenzene       140         Methylcyclohexane       360         m-Xylene & p-Xylene       2300         460-73634-14       29-WG-R23GW (5.5-9.5)         Benzene       120         Cyclohexane       590         Ethylbenzene       1500     <		
Ethylbenzene 1300 Isopropylbenzene 160 Methylcyclohexane 410 m-Xylene & p-Xylene 4900 Toluene 11 J J 460-73634-12 29-WG-Q24GW (4.5-8.5) 2-Butanone (MEK) 24 J 4-Methyl-2-pentanone (MIBK) 23 J Acetone 170 Benzene 13 Cyclohexane 220 Ethylbenzene 620 Isopropylbenzene 490 m-Xylene & p-Xylene 620 Isopropylbenzene 630 G-3 J 460-73634-13 29-WG-Q23GW (5.5-9.5) Acetone 190 Benzene 2.6 J Cyclohexane 55 Ethylbenzene 55 Ethylbenzene 490 Isopropylbenzene 490 Methylcyclohexane 55 Ethylbenzene 260 J Cyclohexane 270 J G-3634-13 29-WG-Q23GW (5.5-9.5) Acetone 190 Benzene 2.6 J Cyclohexane 360 m-Xylene 360 J Cyclohexane 360 m-Xylene 360 J Cyclohexane 360 m-Xylene 360 J Cyclohexane 55 Ethylbenzene 140 Methylcyclohexane 360 m-Xylene 8 p-Xylene 2300 J G-25-9.5) Benzene 120 Cyclohexane 590 Ethylbenzene 1500 Isopropylbenzene 140	25 ug/L	8260C
Ethylbenzene 1300 sopropylbenzene 160 Methylcyclohexane 160 Methylcyclohexane 1410 m-Xylene & p-Xylene 4900 Toluene 11 J J 460-73634-12 29-WG-Q24GW (4.5-8.5) 2-Butanone (MEK) 24 J Acetone 170 Senzene 13 Cyclohexane 13 Cyclohexane 220 Ethylbenzene 150 Senzene 150 Methylcyclohexane 150 Methylcyclohexane 150 Senzene 150	25 ug/L	8260C
Sopropylbenzene   160   Methylcyclohexane   410   m-Xylene & p-Xylene   4900   Toluene   11	25 ug/L	8260C
Methylcyclohexane m-Xylene & p-Xylene Toluene  11  400  Toluene  11  400  Toluene  11  400  Toluene  11  400  Toluene  11  400  Toluene  11  400  Toluene  11  400  Toluene  11  400  Toluene  11  400  Toluene  11  40  Toluene  11  40  Toluene  12  Toluene  13  Toluene  14  Toluene  150  Methylcyclohexane  150  Methylcyclohexane  150  Methylcyclohexane  150  Methylcyclohexane  150  Methylcyclohexane  150  Toluene  1500  25 ug/L	8260C	
### Application	25 ug/L	8260C
Toluene	25 ug/L	8260C
2-Butanone (MEK) 24 J 4-Methyl-2-pentanone (MIBK) 23 J Acetone 170 , 3-Acetone 150 , 3-Acetone 8 p-Xylene 3600 , 3-Acetone 8.9 J Toluene 6.3 J  460-73634-13 29-WG-Q23GW (5.5-9.5) Acetone 190 , 3-Acetone 190	25 ug/L	8260C
2-Butanone (MEK) 24 J 3-Methyl-2-pentanone (MIBK) 23 J 3-Acetone 170 , 3-Acetone 170 , 3-Acetone 170 , 3-Acetone 170 , 3-Acetone 170 , 3-Acetone 170 , 3-Acetone 170 , 3-Acetone 170 , 3-Acetone 170 , 3-Acetone 170 , 3-Acetone 170 , 3-Acetone 150 , 3-Acetone 150 , 3-Acetone 8.9 J 3-Acetone 8.9 J 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Acetone 190 , 3-Aceto	•	
Methyl-2-pentanone (MIBK)		99999
Acetone 170 Benzene 13 Cyclohexane 220 Ethylbenzene 620 Isopropylbenzene 150 Methylcyclohexane 490 m-Xylene & p-Xylene 3600 p-Xylene 8.9 J Toluene 6.3 J  460-73634-13 29-WG-Q23GW (5.5-9.5) Acetone 190 Benzene 2.6 J Cyclohexane 55 Ethylbenzene 490 Isopropylbenzene 140 Methylcyclohexane 360 m-Xylene 8 p-Xylene 2300  460-73634-14 29-WG-R23GW (5.5-9.5) Benzene 2300  460-73634-14 29-WG-R23GW (5.5-9.5) Benzene 590 Ethylbenzene 1500 Isopropylbenzene 140	50 ug/L	8260C
Senzene 13 Cyclohexane 220 Ethylbenzene 620 Isopropylbenzene 150 Methylcyclohexane 490 m-Xylene & p-Xylene 3600 p-Xylene 8.9 J Toluene 6.3 J  460-73634-13 29-WG-Q23GW (5.5-9.5) Acetone 190 Benzene 2.6 J Cyclohexane 55 Ethylbenzene 490 Isopropylbenzene 140 Methylcyclohexane 360 m-Xylene & p-Xylene 2300  460-73634-14 29-WG-R23GW (5.5-9.5) Benzene 120 Cyclohexane 590 Ethylbenzene 1500 Isopropylbenzene 1500	50 ug/L	8260C
Cyclohexane       220         Ethylbenzene       620         Isopropylbenzene       150         Methylcyclohexane       490         m-Xylene & p-Xylene       3600         D-Xylene       8.9       J         Toluene       6.3       J         460-73634-13       29-WG-Q23GW (5.5-9.5)         Acetone       190         Benzene       2.6       J         Cyclohexane       55         Ethylbenzene       140         Methylcyclohexane       360         m-Xylene & p-Xylene       2300         460-73634-14       29-WG-R23GW (5.5-9.5)         Benzene       120         Cyclohexane       590         Ethylbenzene       1500         Isopropylbenzene       140	50 ug/L	8260C
Ethylbenzene 620 Isopropylbenzene 150 Methylcyclohexane 490 m-Xylene & p-Xylene 3600 p-Xylene 8.9 J Toluene 6.3 J  460-73634-13 29-WG-Q23GW (5.5-9.5) Acetone 190 Benzene 2.6 J Cyclohexane 55 Ethylbenzene 490 Isopropylbenzene 140 Methylcyclohexane 360 m-Xylene & p-Xylene 2300  460-73634-14 29-WG-R23GW (5.5-9.5) Benzene 590 Ethylbenzene 1500 Isopropylbenzene 1500	10 ug/L	8260C
Sopropylbenzene   150   Methylcyclohexane   490   Methylcyclohexane   3600   Methylcyclohexane   3600   Methylcyclohexane   8.9   Journal of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	10 ug/L	8260C
Methylcyclohexane 490 m-Xylene & p-Xylene 3600 p-Xylene 8.9 J Foluene 6.3 J  460-73634-13 29-WG-Q23GW (5.5-9.5) Acetone 190 Benzene 2.6 J Cyclohexane 55 Ethylbenzene 490 sopropylbenzene 140 Methylcyclohexane 360 m-Xylene & p-Xylene 2300  460-73634-14 29-WG-R23GW (5.5-9.5) Benzene 120 Cyclohexane 590 Ethylbenzene 1500 Isopropylbenzene 1500 Isopropylbenzene 1500 Isopropylbenzene 1500 Isopropylbenzene 1500 Isopropylbenzene 1500	10 ug/L	8260C
m-Xylene & p-Xylene 3600 p-Xylene 8.9 J Foluene 6.3 J  160-73634-13 29-WG-Q23GW (5.5-9.5) Acetone 190 Benzene 2.6 J Cyclohexane 55 Ethylbenzene 490 sopropylbenzene 140 Methylcyclohexane 360 m-Xylene & p-Xylene 2300  460-73634-14 29-WG-R23GW (5.5-9.5) Benzene 120 Cyclohexane 590 Ethylbenzene 1500 Isopropylbenzene 1500 Isopropylbenzene 1500 Isopropylbenzene 1500	10 ug/L	8260C
D-Xylene	10 ug/L	8260C
## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Acetone ## 1500 Aceton	10 ug/L	8260C
Toluene   6.3   J	10 ug/L	8260C
Acetone 190 Benzene 2.6 J Cyclohexane 55 Ethylbenzene 490 Isopropylbenzene 140 Methylcyclohexane 360 m-Xylene & p-Xylene 2300  460-73634-14 29-WG-R23GW (5.5-9.5) Benzene 120 Cyclohexane 590 Ethylbenzene 1500 Isopropylbenzene 140	10 ug/L	8260C
Acetone 190 Benzene 2.6 J Cyclohexane 55 Ethylbenzene 490 Isopropylbenzene 140 Methylcyclohexane 360 m-Xylene & p-Xylene 2300  460-73634-14 29-WG-R23GW (5.5-9.5) Benzene 120 Cyclohexane 590 Ethylbenzene 1500 Isopropylbenzene 140		
Benzene 2.6 J Cyclohexane 55 Ethylbenzene 490 Isopropylbenzene 140 Methylcyclohexane 360 m-Xylene & p-Xylene 2300  460-73634-14 29-WG-R23GW (5.5-9.5) Benzene 120 Cyclohexane 590 Ethylbenzene 1500 Isopropylbenzene 140	50 ug/L	8260C
Cyclohexane       55         Ethylbenzene       490         Isopropylbenzene       140         Methylcyclohexane       360         m-Xylene & p-Xylene       2300         460-73634-14       29-WG-R23GW (5.5-9.5)         Benzene       120         Cyclohexane       590         Ethylbenzene       1500         Isopropylbenzene       140	10 ug/L	8260C
Ethylbenzene 490 sopropylbenzene 140 Methylcyclohexane 360 m-Xylene & p-Xylene 2300  460-73634-14 29-WG-R23GW (5.5-9.5) Benzene 120 Cyclohexane 590 Ethylbenzene 1500 Isopropylbenzene 140	10 ug/L	8260C
sopropylbenzene 140 Methylcyclohexane 360 m-Xylene & p-Xylene 2300  460-73634-14 29-WG-R23GW (5.5-9.5) Benzene 120 Cyclohexane 590 Ethylbenzene 1500 Isopropylbenzene 140	10 ug/L	8260C
Methylcyclohexane 360 m-Xylene & p-Xylene 2300  460-73634-14 29-WG-R23GW (5.5-9.5)  Benzene 120 Cyclohexane 590 Ethylbenzene 1500 Isopropylbenzene 140	10 ug/L	8260C
### A p-Xylene & p-Xylene 2300  #### 29-WG-R23GW (5.5-9.5)  Benzene 120  Cyclohexane 590  Ethylbenzene 1500  Isopropylbenzene 140	10 ug/L	8260C
Benzene       120         Cyclohexane       590         Ethylbenzene       1500         Isopropylbenzene       140	10 ug/L	8260C
Benzene       120         Cyclohexane       590         Ethylbenzene       1500         Isopropylbenzene       140		
Cyclohexane 590 Ethylbenzene 1500 Isopropylbenzene 140	20 ug/L	8260C
Ethylbenzene 1500 Isopropylbenzene 140	20 ug/L	8260C
Isopropylbenzene 140	20 ug/L	8260C
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	20 ug/L	8260C
Methylcyclohexane 840	20 ug/L	8260C
	20 ug/L	8260C
, , ,	20 ug/L	8260C
o-Xylene 1500 Toluene 400	20 ¹ ug/L	8260C

Client: TRC Environmental Corporation

Lab Sample ID  Cl Analyte	ient Sample ID	Result	Qualifier	Reporting Limit	Units	Method	
460-73634-15	29-WG-S24GW (4.5-8.5)						
Benzene	, ,	85		20	ug/L	8260C	
Cyclohexane		470		20	ug/L	8260C	
Ethylbenzene		860		20	ug/L	8260C	
Isopropylbenzene		130		20	ug/L	8260C	
Methylcyclohexane		1200		20	ug/L	8260C	
m-Xylene & p-Xylene		3700		20	ug/L	8260C	
o-Xylene		14	J	20	ug/L	8260C	
Toluene		5.0	J	20	ug/L	8260C	
460-73634-16	29-WG-S26GW (5-9)				A		
Benzene	(0 0)	400		20	ug/L	8260C	
Cyclohexane		400		20	ug/L	8260C	
Ethylbenzene		740		20	ug/L	8260C	
Isopropylbenzene		74		20	ug/L	8260C	
Methylcyclohexane		560		20	ug/L	8260C	
m-Xylene & p-Xylene		3200		20	ug/L	8260C	
o-Xylene		1300		20	ug/L	8260C	
Toluene		3600	•	20	ug/L	8260C	
460-73634-17	29-WG-R26GW (6.5-10.5)	1					
Benzene	20 110 1 20 11 (010 1010)	850		25	ug/L	8260C	
Cyclohexane		530		25	ug/L	8260C	
Ethylbenzene		1500		25	ug/L	8260C	
Isopropylbenzene		180		25	ug/L	8260C	
Methylcyclohexane		1000		25	ug/L	8260C	
m-Xylene & p-Xylene		5000		25	ug/L	8260C	
o-Xylene		190		25	ug/L	8260C	
Toluene		110		25	ug/L	8260C	
460-73634-18	29-WG-R24GW (8.5-12.5)	<b>\</b>					
Benzene		, 870		25	ug/L	8260C	
Cyclohexane		490		25	ug/L	8260C	
Ethylbenzene		1300		25	ug/L	8260C	
Isopropylbenzene		120		25	ug/L	8260C	
Methylcydohexane		660		25	ug/L	8260C	
m-Xylene & p-Xylene		4600		25	ug/L	8260C	
o-Xylene	v	560		25	ug/L	8260C	
5 / 13 IOI IO	•	555			-J-		

#### **METHOD SUMMARY**

Client: TRC Environmental Corporation

Job Number: 460-73634-1

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
Volatile Organic Compounds by GC/MS	TAL EDI	SW846 8260C	
Closed System Purge and Trap	TAL EDI		SW846 5035
Percent Moisture	TAL EDI	EPA Moisture	
Matrix: Water			
Volatile Organic Compounds by GC/MS	TAL EDI	SW846 8260C	
Purge and Trap	TAL EDI		SW846 5030C

#### Lab References:

TAL EDI = TestAmerica Edison

#### **Method References:**

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

# Shipping and Receiving Documents

# **TestAmerica**



777 New Durham Road Edison, New Jersey 08817 Phone: (732) 549-3900 Fax: (732) 549-3679

Company

TAL - 0016 (0408)

THE LEADER IN ENVIRONMENTAL TESTING	CHA	IN OF							,	1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	F	Page 1 of 6
Name (for report and invoice)			Name (			:vec		Site/Pro	ject ld	entific	ation	? K	EI		· -
Mark Winbourne			Carls	JA JK	, ,/\/	. 000		<u> </u>	SA		40	1 1	NY:		Other:
Company TO C		P. O. #	1701	2			ļ-	State (L				1: [2]	MIL	<del>-</del>	Julei.
TRC		(	5738					Regulat							
Address 21 Griffin Rd Noi Ph		Analysis To Standard	Irnaround T	lmo		ANALYSIS	REQUES	TED (ENTE	R X: BELO	ON OT WO	CATE REQUI	(\$7)			LAB USE ONLY Project No:
O'h . Stoto		1	ges Authorizi	ed For	\ \sigma	Ì		1	1		1	ľ	1		
Windsor CT OK	095	2 Wook	لسسإ		100	2									Job No: り3634
Phone (56) 298-6237 (56) 298-6	39°	1 Woek Othor	ᆸ		rcl vocs	Solids								ł	
Sample Identification	Date	Time	Matrix	No. of. Cont.	7	S									Sample Numbers
· FB040114	4/1/14	0730	DI	2	X										1
TB040114	١	0735	DI	2	X										a
1 29-WG-P26(5.75)		1035	Soil	4	X	X							·		.3
, 29-EG-GISGW(4-8)		1530	GW	3	X										4
· a 9-EG-G15GW(14-18)		1540	GW	3	X										S
1 29-EG-GITGW(7-11)		1545	GW	3	X				1		_				Ġ
· 29-EG-HIGW (5-9)		1610	Gω	3	X				-	A'S	. ·				7
· a 9-EG-IISGW (5-9)		1625	GW	3	X				4	KO.	NO.				8
		1000					-		·	Y _O					Ħ
			Carl-						<u> </u>	•			$\blacksquare$		
	4 11110	<u> </u>	311	Call	6/7	,			-	_		_			
Preservation Used: 1 = ICE, 2 = HCI, 3 = H ₂ SO, 6 = Other Chap H, 7 = 0			J⊓	Water		<del>'</del>			十	十		-			
													لسسساء		
Special Instructions Custody Scal	<del>#</del> 769	3696	Fed E					154				_		iltered	t (Yes/No)?
Relinquished by Compar	TRC		4/1/1	ate / Tim		Receix 1)	- 17	٠,	``(·	Fad	32)		pany A E	} ,	4/7/14
Relinguished by Compar	<u> </u>			ate / Tim		Receiv				*			pany	2#	5 0.1/0.2°C
2)			<u> </u>	ate / Tim	-	2) Receiv	od by					Gom	nany !		
Relinquished by Compa	ny		"	ate / IIM	E	UECE!/	en ny					Gom	ガスく	169	4

Laboratory Certifications: New Jersey (12028). New York (11452), Pennsylvania (68-522), Connecticut (PH-0200). Rhode Island (132).

Date / Time

Received by

Massachusetts (M-NJ312), North Carolina (No. 578)

Company

Relinquished by



777 New Durham Road

Edison, New Jersey 08817 Phone: (732) 549-3900 Fax: (732) 549-3679

## CHAIN OF CUSTODY / ANALYSIS DECUEST

THE LEADER IN ENVIRONMENTAL TESTING	AIN OF COSTODT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11240201	Page <u>2</u> of <u>4</u>
Name (for report and invoice)  Mark Win bourne	Sampiers Name (Printed)	11000	Site/Project Identification	
Company COM BIBINE	C. Carlson, R.	Neugo	FAA Area 29 REI	T 01
TRC	67323	•	State (Location of site): NJ: NY:	Other:
Address			Regulatory Program:	T
al Grilfin Rd North	Analysis Turnaround Time	ANALYSIS REQU	JESTED (ENTER %: BELOW TO INDICATE REQUEST)	LAB USE ONLY
City 1 State	Standard Standard Standard Standard Standard	2 5		Project No:
Wydsor CT 06095	Rush Chrages Authorized For:	2 3		Job No:
Phone Fay	1 Week	VOCS		000 110.
(960) 298 -6237 (860) 298-6399	Other			
	No. of.	M5/43		Sample
Sample Identification Date	Time Matrix Cont.	1/5		Numbers
* 29-EG-GBGW(4,5-8.5) 4/1/14	1120 GW 9	$\times \times$		9
· 29-WG-Q26GW (5-9)	1305 GW 3	$\times$		10
= 29-66-0256W(5-9)	1295 GW 3	X		11
· 29-66-03466(4.5-8.5)	1245 GW 3	$\overline{\mathbf{x}}$		(人
- 29-W6-023GW(5.5-9.5)	1310 GW 3	$\boxtimes$		13
· 29-66-823GW(5.5-9.5)	1335 CW 3			14
2 29-WG-S24GW(4.5-8.5)	1400 GW 3			(5
· 29-WG-5266W(5-9)	145 GW 3	$\times$		16
· 29-WG-R266W (6.5-10.5)	1435 GW 3			17
1 29-WG-R24GW (8.5-12.5) N	1455 GW 3	$\mathbf{x}$		18
Preservation Used: 1 = ICE, 2 = HCl, 3 = H ₂ SO ₄ , 4 = HNC				
6 = Other, 7 = Other	Water:	2		
Special Instructions Custody Scal # 768690	Fed Ex Tr#	803567680	454 Water Metals Filte	ered (Yes/No)?

Special Instructions	Cistaly Scal # 768696	FED EX THE 80	<u>3567680454                                   </u>	Water Metals Filtered (Yes/No)?
Relinquished by	Company	Date / Time	Received by	(Fodex) Company TA (1) 4/2/14 10:
Relinguished by	Company	Date / Time	Received by	Company
2)		i	2)	
Relinquished by	Company	Date / Time	Received by	Company
3)		. 1	3)	
Relinquished by	Company	Date / Time	Received by	Company
4)		1	4)	
Laboratory Certifications:	New Jersey (12028) New Yor	k (11/62) Popocytyonia	(69-522) Connecticut	+ (PH-0200)   Phodo Joland (120)

Laboratory Certifications: New Jersey (12028), New York (11452), Pennsylvania (68-522), Connecticut (PH-0200), Rhode Island (132).

Page / of )

# TestAmerica Edison Receipt Temperature and pH Log

Job Number: Number of Coolers: Temp. Cooler #4 (Deg.C) (Raw/Corrected) Temp. Copler #7 (Deg.C) (Raw/Corrected) Temp. Cooler #1 (Deg C) (Raw/Corrected) Temp. Cocler #5 (Deg C) (Raw/Corrected) Temp. Cooler #8 (Deg C): (Raw/Corrected) Temp. Cooler #2 (Deg C) (Raw/Corrected) Temp. Cooler #6 (Deg C) (Raw/Corrected) Temp. Cooler #6 (Deg C) (Raw/Corrected) Temp. Cooler #3 (Deg C) (Raw/Corrected) Total Total Nitrate TKN Cyanide Phos Other COD **Nitrite** "Metals Pest **Phenois** Sulfide Ammonia (pH<2) (pH<2) (pH>12) (pH<2) Sample No. (pH<2)(pH<2)(pH<2)(pH<2)(pH 5-9) (pH<2) (pH<2)(pH>9) If pH adjustments are required record the information below: Sample No(s). adjusted: _ Preservative Name/Conc.:__ Volume of Preservative used (ml):_ Lot # of Preservative:_ Expiration Date:_ Project Manager and the Department Manager should be notified about the samples which were pH adjusted. * Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis. EDS-WI-038, Rev 3, 10/8/12 Initials:

# **Login Sample Receipt Checklist**

client: TRC Environmental Corporation

Job Number: 460-73634-1

Login Number: 73634

List Number: 1

Creator: Elvie, Cloide

List Source: TestAmerica Edison

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	768696
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.2°C IR#5
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
ntainers are not broken or leaking.	True	
nple collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	